K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

\(\left(x-4\right)^2-36=0\)

\(\left(x-4\right)^2-6^2=0\)

\(\left(x-4-6\right)\left(x-4+6\right)=0\)

\(\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-10=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)

vay \(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)

14 tháng 9 2017

(x-4)2-36=0

(x-4)2-62=0

(x-4-6)(x-4+6)=0

(x-10)(x+2)=0

=>[x-10=0=>[x=0

    (x+2=0=>[x=-2

Vay [x=10

      [x=-2

30 tháng 10 2020

a) \(5x\left(x+4\right)-x\left(5x+1\right)=0\)

\(\Leftrightarrow x\left[5\left(x+4\right)-5x-1\right]=0\)

\(\Leftrightarrow x\left(5x+20-5x-1\right)=0\Leftrightarrow x=0\)

b) \(3x\left(5-x\right)+4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(4-3x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)

c) \(x\left(x-3\right)+4x-12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)

d) \(x^2-36=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

e) \(x^2+3x+1=2\)

\(\Leftrightarrow x^2+3x+1-2=0\)

\(\Leftrightarrow x^2+3x-1=0\)

\(\Leftrightarrow x^2+3x+\frac{3}{2}-\frac{5}{2}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{2}=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{\sqrt{2}}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{\sqrt{2}}\right)=0\)

Còn lại ........... Tự lm nất nha 

19 tháng 8 2016

a) (x - 4)2 - 36 = 0

=> (x - 4)2 = 36

=> x - 4 = 6 hoặc x - 4 = -6

=> x = 10 hoặc x = -2

b) hình như sai đề bn ạ

c) x(x - 5) - 4x + 20 = 0

=> x(x - 5) - 4(x - 5) = 0

=> (x - 5)(x - 4) = 0

=> x - 5 = 0 hoặc x - 4 = 0

=> x = 5 hoặc x = 4

14 tháng 8 2019

\(4x^2-28=0\)

\(4x^2=28\)

\(x^2=7\)

\(\)

14 tháng 8 2019

\(4x^2-28=0\)

\(\Leftrightarrow4\left(x^2-7\right)=0\)

\(\Leftrightarrow x^2-7=0\)

\(\Leftrightarrow x^2=7\)

\(\Leftrightarrow x=\pm\sqrt{7}\)

11 tháng 12 2018

\(\left(3x-4\right)^2-36=0\)

\(\left(3x-4\right)^2-6^2=0\)

\(\left(3x-4-6\right)\left(3x-4+6\right)=0\)

\(\left(3x-10\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-10=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10}{3}\\x=-\frac{2}{3}\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=\frac{10}{3}\\x=-\frac{2}{3}\end{cases}}\)

20 tháng 8 2016

\(\left(x-4\right)^2-36=0\)

\(\Leftrightarrow\left(x-4\right)^2=0+36\)

\(\Leftrightarrow\left(x-4\right)^2=36\)

\(\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{36}\)

\(\Leftrightarrow\left(x-4\right)=\pm6\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=6\\x-4=-6\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=10\\x=-2\end{array}\right.\)

Vậy \(x\in\left\{10;-2\right\}\)

20 tháng 8 2016

( x - 4)2 = 36

( x - 4)2 = 62

x - 4 = 6

x = 10

21 tháng 9 2017

a) \(x^3-4x^2-9x+36=0\Leftrightarrow x^3-7x^2+12x+3x^2-21x+36=0\) \(x\left(x^2-7x+12\right)+3\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x^2-7x+12\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x-4x+12\right)=0\) \(\Leftrightarrow\left(x+3\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\Leftrightarrow\left(x+3\right)\left(x-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\x-4=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=4\\x=3\end{matrix}\right.\) vậy \(x=-3;x=4;x=3\)

b) \(5x^2-4\left(x^2-2x+1\right)-5=0\) \(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\Leftrightarrow x^2-x+9x-9=0\)

\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+9=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\) vậy \(x=-9;x=1\)

c) đề có sai o bn

d) \(x^3-3x+2=0\Leftrightarrow x^3+x^2-2x-x^2-x+2=0\)

\(\Leftrightarrow x\left(x^2+x-2\right)-\left(x^2+x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2x-2\right)=0\Leftrightarrow\left(x-1\right)\left(x\left(x-1\right)+2\left(x-1\right)\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-1\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-2\\x=1\end{matrix}\right.\)

vậy \(x=1;x=-2\)

21 tháng 9 2017

1. \(x^3-4x^2-9x+36=0\)

\(\Rightarrow x^2.\left(x-4\right)-9\left(x-4\right)=0\)

\(\Rightarrow\left(x^2-9\right)\left(x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-9=0\Rightarrow x\in\left\{3;-3\right\}\\x-4=0\Rightarrow x=4\end{matrix}\right.\)

Vậy ..........

2. \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Rightarrow5x^2-4\left(x^2-1\right)-5=0\)

\(\Rightarrow5x^2-4x^2+4-5=0\)

\(\Rightarrow x^2-1=0\)

\(\Rightarrow x^2=1\)

\(\Rightarrow x=\pm1\)

Vậy .......

3. \(x^3-3x+2=0\)

\(\Rightarrow x^3-4x+x+2=0\)

\(\Rightarrow x.\left(x^2-4\right)+x+2=0\)

\(\Rightarrow x.\left(x-2\right).\left(x+2\right)+x+2=0\)

\(\Rightarrow\left(x+2\right).\left(x^2-2x+1\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x-1\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(x+2\right)=0\\\left(x-1\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

Vậy .......

4 tháng 12 2015

a/ => 6x3 + x2 - 2x = 0

=> x (6x2 + x - 2) = 0

=> x (6x2 + 4x - 3x - 2) = 0

=> x [ 2x (3x + 2) - (3x + 2) ] =0

=> x (3x + 2) (2x - 1) = 0

=> x = 0

hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3

hoặc 2x - 1 = 0 => 2x = 1 => x = 1/2

Vậy x = 0; x = -2/3 ; x = 1/2

Câu b,c,d tương tự

17 tháng 2 2017

Ví dụ 3: Giải phương trình : (4).

Giải: Ta có phương trình:

, phương trình này có nghiệm: .

Do vậy

,

.

17 tháng 2 2017

a) Ta có :\(2x^4-x^3-9x^2+13x-5=0=>\left(x-1\right)^3\left(2x+5\right)=0\)

=>\(\left\{\begin{matrix}\left(x-1\right)^3=0\\2x+5=0\end{matrix}\right.=>\left\{\begin{matrix}x-1=0\\2x=-5\end{matrix}\right.=>\left\{\begin{matrix}x=1\\x=-2,5\end{matrix}\right.\)

Vậy tập nghiệm của phương trình S={-2,5 ;1}

b)\(x^4-2x^3-11x^2+12x+36=0=>\left(x-3\right)^2\left(x+2\right)^2=0\)

=>\(\left\{\begin{matrix}\left(x-3\right)^2=0=>x-3=0=>x=3\\\left(x+2\right)^2=0=>x+2=0=>x=-2\end{matrix}\right.\)

Vậy tập nghiệm của pt là S={-2;3}