Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + x) (x2 + x + 1) = 6
(x2 + x) (x2 + x + 1) = 2 . 3 = (-2) . (-3)
Vì x2 + x và x2 + x + 1 là 2 số liên tiếp nên x2 + x = 2, x2 + x + 1 = 3 hoặc x2 + x = -3, x2 + x + 1 = -2
=> x2 + x = 2 hoặc x2 + x = -3
Vì x2 + x = x . (x + 1) là tích 2 số liên tiếp nên x2 + x chẵn
=> x . (x + 1) = 2 = 1 x 2
=> x = 1
Vậy x = 1
x4+4-36x2+36-x4+2x2-2x2-4
=(x4-x4)+(4-4)+(2x2-2x2-36x2)+36
=0+0-36x2+36
=còn lai dặt thừa số chung nha mình phải đi học rùi bye bye hêhhe
(x + 1)4 - 6(x + 1)2 - (x2 - 2)(x2 + 2)
= (x2 + 2x + 1)(x2 + 2x + 1) - 6(x2 + 2x + 1) - (x2 - 2)(x2 + 2)
= x4 + 2x3 + x2 + 2x3 + 4x2 + 2x + x2 + 2x + 1 - 6x2 - 12x - 6 - x4 + 4
= 4x3 - 8x - 1
Cô hướng dẫn câu tìm x:
\(\left(x^2-4x\right)^2-8\left(x^2-4x\right)+15=0\)
Đặt \(x^2-4x=t\), pt trở thành \(t^2-8t+15=0\Leftrightarrow\left(t-3\right)\left(t-5\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=5\end{cases}}\)
Với t = 3, ta có phương trình \(x^2-4x=3\Leftrightarrow x^2-4x-3=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+2\\x=-\sqrt{7}+2\end{cases}}\)
Với t = 5, ta có \(x^2-4x=5\Leftrightarrow x^2-4x-5=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2x-22}{\left(x-2\right)\left(x+2\right)}\)
=> x2 - 4x + 4 - 3x - 6 = 2x - 22
<=> x2 - 9x + 20 = 0
<=> x2 - 4x - 5x + 20 = 0
<=> x( x - 4 ) - 5( x - 4 ) = 0
<=> ( x - 4 )( x - 5 ) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 (tm) hoặc x = 5 (tm)
Vậy ...
\(\frac{x-2}{x+2}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{x^2-4}\)ĐKXĐ : \(x\ne\pm2\)
\(\Leftrightarrow\frac{\left(x-2\right)^2-3\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x-22}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow x^2-4x+4-3x-6=2x-22\)
\(\Leftrightarrow x^2-7x-2=2x-22\Leftrightarrow x^2-9x+20=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow x=4;x=5\)( tmđk )
Vậy tập nghiệm phương trình là S = { 4 ; 5 }
a) \(\left(x-3\right).\left(x^2+3x+9\right)-x.\left(x+4\right)\left(x-4\right)=21\)
\(\Leftrightarrow x^3-27-x.\left(x^2-16\right)=21\) \(\Leftrightarrow x^3-27-x^3+16x=21\)
\(\Leftrightarrow16x=21+27\) \(\Leftrightarrow16x=48\) \(\Leftrightarrow x=3\)
b) \(\left(x+2\right)\left(x^2-2x+4\right)-x.\left(x^2+2\right)=4\)
\(\Leftrightarrow x^3+8-x^3-2x=4\) \(\Leftrightarrow-2x=4-8\) \(\Leftrightarrow-2x=-4\) \(\Leftrightarrow x=2\)
\(\left(x+3\right)^2-x\left(x+4\right)=21\\ \Rightarrow x^2+6x+9-x^2-4x=21\\ \Rightarrow2x=12\\ \Rightarrow x=6\)
hình như sai á bn