K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Đề bài :

\(\left(x-2\right)\left(x-4\right)\left(x+6\right)\left(x+8\right)=-36\)

\(x=+_-\sqrt{34}-2,\)

\(x=-3\sqrt{2}-2,\)

\(x=3\sqrt{2}-2\)

30 tháng 6 2017

Ta có : x+ x3 + 6x2 + 5x + 5 

= (x4 + 5x2) + (x3 + 5x) + (x2 + 5)

= x2(x2 + 5) + x(x2 + 5) + (x2 + 5)

= (x2 + 5)(x2 + x + 1)

23 tháng 7 2021

b)(x+3)2-(x-4)(x+8)=1

\(\Rightarrow\)x2+6x+9-(x2+8x-4x-32)=1

⇒x2+6x+9-x2-8x+4x+32=1

⇒2x+41=1

\(\Rightarrow\)2x+41-1=0

\(\Rightarrow\)2x+40=0

⇒2x=-40

\(\Rightarrow\)x=\(\dfrac{-40}{2}\)

⇒x=-20

22 tháng 12 2020

Rảnh rỗi thật sự .-.

undefined

6 tháng 12 2018

(-5)+(-11)

6 tháng 12 2018

\(\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+36=0\)

\(\left[\left(x-1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-5\right)\right]+36=0\)

\(\left(x^2-9x+8\right)\left(x^2-9x+20\right)+36=0\)

Đặt \(a=x^2-9x+14\)ta có :

\(\left(a-6\right)\left(a+6\right)+36=0\)

\(a^2-6^2+36=0\)

\(a^2=0\)

Thay \(a=x^2-9x+14\)ta có :

\(\left(x^2-9x+14\right)^2=0\)

\(\Leftrightarrow x^2-9x+14=0\)

\(\Leftrightarrow x^2-2x-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}}\)

Vậy,...........

20 tháng 12 2020

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

29 tháng 3 2022

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`

13 tháng 9 2017

\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

<=>\(\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

<=>\(\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

<=>\(\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

<=>x = 12

8 tháng 7 2018

\(\frac{2}{\left(x+2\right)\left(x+4\right)}+\frac{4}{\left(x+4\right)\left(x+8\right)}+\frac{6}{\left(x+8\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

\(\Leftrightarrow\frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

\(\Leftrightarrow\frac{12}{\left(x+2\right)\left(x+14\right)}=\frac{x}{\left(x+2\right)\left(x+14\right)}\)

\(\Leftrightarrow x=12\)

Vậy \(x=12\)

7 tháng 5 2017

a)ĐKXĐ:x\(\ne\)0 x\(\ne\)6

=>90(x-6)-36x=2x(x-6)

<=>90x-540-36x=2x2-12x

<=>2x2-12x=54x-540

<=>2x2-66x+540=0

<=>x2-33x+270=0

<=>(x2-15x)-(18x-270)=0

<=>(x-15)(x-18)=0

<=>x=15(tm) hoặc x=18(tm)

b)ĐKXĐ:x\(\ne\)0 x\(\ne\)3

sai đề

c)ĐKXĐ:x\(\ne\)-2 x\(\ne\)2

=>3(x-2)-2(x+2)+8=0

<=>3x-6-2x-4+8=0

<=>x-2=0

<=>x=2(L)

Vậy PT vô nghiệm

d)ĐKXĐ: x\(\ne\)-7

=>10+8=\(\dfrac{3}{2}\)(câu này hình như đề cũng sai)

6 tháng 10 2020

5.

P = ( x - 1 )( x + 2 )( x + 3 )( x + 6 ) < sửa rồi nhé :v >

= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

= ( x2 + 5x - 6 )( x2 + 5x + 6 ) (1)

Đặt t = x2 + 5x 

(1) = ( t - 6 )( t + 6 )

     = t2 - 36 ≥ -36 ∀ t

Dấu "=" xảy ra khi t = 0

=> x2 + 5x = 0

=> x( x + 5 ) = 0

=> x = 0 hoặc x = -5

=> MinP = -36 <=> x = 0 hoặc x = -5

6 tháng 10 2020

6.

a) ( x2 + x )2 + 4( x2 + x ) = 12

Đặt t = x2 + x

pt <=> t2 + 4t = 12

     <=> t2 + 4t - 12 = 0

     <=> t2 - 2t + 6t - 12 = 0

     <=> t( t - 2 ) + 6( t - 2 ) = 0

     <=> ( t - 2 )( t + 6 ) = 0

     <=> ( x2 + x - 2 )( x2 + x + 6 ) = 0

     <=> x2 + x - 2 = 0 hoặc x2 + x + 6 = 0

+) x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

+) x2 + x + 6 = ( x2 + x + 1/4 ) + 23/4 = ( x + 1/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x

=> x ∈ { -2 ; 1 }

b) x2 - 12x + 36 = 81

<=> ( x - 6 )2 = ( ±9 )2

<=> x - 6 = 9 hoặc x - 6 = -9

<=> x = 15 hoặc x = -3