Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi ý:
a,b biến đổi làm sao để:
a) áp dụng: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)
b) áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
c) Đánh giá: \(\left|x-2015\right|^{2015}\ge0\)
\(\left(y-2016\right)^{2016}\ge0\)
=> \(C\ge1\)khi \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)
a ) A = | x - 5 | - | x - 7 |
Nhận xét :
| x - 5 | - | x - 7 | < | x - 5 - x + 7 |
=> A < | 2 |
=> A < 2
Dấu "=" xảy ra khi : ( x - 5 ) ( x - 7 ) > 0
TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)
=> \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)
=> x > 7
TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)
=> x < 5
Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7
b ) B = | 125 - x | + | x - 65 |
Ta có :
| 125 - x | + | x - 65 | > | 125 - x + x - 65 |
=> B > | 60 |
=> B > 60
Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0
TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)
=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)
=> 65 < x < 125
TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)
=> 125 < x < 65 ( vô lí )
Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125
c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1
Nhận xét :
| x - 2015 |2015 > 0 với mọi x
( y - 2016 )2016 > 0 với mọi x
=> | x - 2015 |2015 + ( y - 2016 )2016 > 0
=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1
=> C > 1
Dấu "=" xảy ra khi : x - 2015 = 0
và y - 2016 = 0
=> x = 2015
y = 2016
Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016
\(\frac{x+1}{2015}+\frac{x+1}{2016}=\frac{x+1}{2017}+\frac{x+1}{2018}\)
\(\Rightarrow\frac{x+1}{2015}+\frac{x+1}{2016}-\frac{x+1}{2017}-\frac{x+1}{2018}=0\)
\(\left(x+1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
\(\Rightarrow x+1=0\)
\(x=-1\)
\(\Leftrightarrow\frac{x+1}{2015}+\frac{x+1}{2016}-\frac{x+1}{2017}-\frac{x+1}{2018}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow x+1=0\) ( vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))
\(\Leftrightarrow x=-1\)
a)Vì |x−2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2
Nếu x-2015=-1/2 thì
x=2015+(-1)/2
x=4029/2
Nếu x-2015=1/2 thì
x=2015+1/2
x=4031/2
Vậy x=4029/2
hoặc x=4031/2
b)
Nếu x>2016 thì |x−2015|=x-2015 ,|x−2016|=x-2016
Khi đó: |x−2015|+|x−2016|=2017
=>x-2015+x-2016=2017
=>2x-4031=2017
=>2x=6048=>x=3024(thỏa mãn x>2016)
Nếu 2015<x<2016 thì |x−2015|=x-2015,
|x−2016|=2016-x. khi đó
|x−2015|+|x−2016|=2017
=>x-2015+2016-x=2017
=>1=2017(vô lý loại)
Nếu x>2015 thì |x−2015|=2015-x,|x−2016|=2016-x
Khi đó:
|x−2015|+|x−2016|=2017
=>2015-x+2016-x=2017
=>4031-2x=2017
=>2x=2014=>x=1007(thỏa mãn x<2015)
Vậy x=1007 hoặc x=3024
(x-1)/2016 +(x-2)/2015 -(x-3)/2014 = (x-4)/2013. =>(x-1)/2016 +(x-2)/2015 = (x-3)/2014 + (x-4)/2013. =>. (X-1)/2016 -1 + (x-2)/2015 -1 = (x -3)/2014 -1 + (x-4)/2013 -1 => (x -2017)/2016 + (x-2017)/2015 -(x-2017)/2014 -(x-2017)/2013 =0. => (x-2017)(1/2016 +1/2015 -1/2014 -1/2013) = 0 => x-2017 =0 => x = 2017
Ta có: \(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{2013}\)
\(\Leftrightarrow\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}-\frac{x-4}{2013}=0\)
\(\Leftrightarrow\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)-\left(\frac{x-3}{2014}-1\right)-\left(\frac{x-4}{2013}-1\right)=0\)
\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\) nên \(x-2017=0\Leftrightarrow x=2017\)
x+4/2015 + x+3/2016 = x+2/2017 + x+1/2018
=> 1 + x+4/2015 + 1 + x+3/2016 = 1 + x+2/2017 + 1 + x+1/2018
=> x+2019/2015 + x+2019/2016 = x+2019/2017 + x+2019/2018
=> x+2019/2015 + x+2019/2016 - x+2019/2017 - x+2019/2018 = 0
=> (x + 2019).(1/2015 + 1/2016 - 1/2017 - 1/2018) = 0
Vì 1/2015 > 1/2017; 1/2016 > 1/2018
=> 1/2015 + 1/2016 - 1/2017 - 1/2018 khác 0
=> x + 2019 = 0
=> x = -2019
\(\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016}\)
\(\Rightarrow\frac{x+4}{2013}+1+\frac{x+3}{2014}+1=\frac{x+2}{2015}+1+\frac{x+1}{2016}+1\)
\(\Rightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}=\frac{x+2017}{2015}+\frac{x+2017}{2016}\)
\(\Rightarrow\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}=0\)
\(\Rightarrow\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)
\(Do\)\(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)
\(\Rightarrow x+2017=0\)
\(\Rightarrow x=-2017\)
Vậy \(x=-2017\)
bạn bấm vào "đúng 0" là sẽ có đáp án hiện ra
\(\frac{x+2015}{2016}+\frac{x+2016}{2015}+\frac{x+2017}{2014}=-3\)
\(\Leftrightarrow\frac{x+2015}{2016}+1+\frac{x+2016}{2015}+1+\frac{x+2017}{2014}+1=0\)
\(\Leftrightarrow\frac{x+4031}{2016}+\frac{x+4031}{2015}+\frac{x+4031}{2014}=0\)
\(\Leftrightarrow\left(x+4031\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
Có: \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)
\(\Rightarrow x+4031=0\)
\(\Rightarrow x=-4031\)