K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

\(3x^2+6x+3+3y^2-12y+12=0\)

\(3\left(x^2+2x+1\right)+3\left(y^2-4y+4\right)=0\)

\(3\left(x+1\right)^2+3\left(y-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

22 tháng 10 2021

\(x^2-y^2+4-4x\)

\(=\left(x-2\right)^2-y^2\)

\(=\left(x-y-2\right)\left(x-2+y\right)\)

22 tháng 10 2021

giải thích chi tiết giúp e ạ.e cảm ơn

18 tháng 2 2020

a/ 4x2+x-4x-1

x(4x+1)-(4x+1)

(4x+1)(x-1)

b/(6-11)x2+3

-5x2+3

c/x2-3xy-4xy+12y2

x(x-3y)-4y(x-3y)

(x-3y)(x-4y)

d/(x-y)2+3(x-y)

(x-y+3)(x-y)

e/(2-12)x2+17x-2

-10x2+17x-2

g/x3+x2+2x2+2x+4x+4

x2(x+1)+2x(x+1)+4(x+1)

(x+1)(x2+2x+4)

h/x3+2x2+7x2+14x+12x+24

x2(x+2)+7x(x+2)+12(x+2)

(x+2)(x2+7x+12)

(x+2)(x2+4x+3x+12)

(x+2)(x+4)(x+3)

18 tháng 2 2020

Giải:

a) 4x2 - 3x - 1 = 4x2 - 4x + x - 1 = 4x(x - 1) + (x -1) = (x - 1)(4x +1)

b) 6x2 - 11x + 3 = 6x2 - 2x - 9x + 3 = 2x(3x - 1) - 3(3x - 1) = (3x - 1)(2x - 3)

c) x2 - 7xy + 12y2 = x2 - 6xy + 9y2 - xy +3y2 = (x - 3y)2 - y(x - 3y) = (x - 3y)( x - 3y - y) = (x - 3y)(x - 4y)

d) x2 - 2xy + y2 + 3x - 3y = (x - y)2 + 3(x - y) = (x - y)(x - y + 3)

e)Sửa đề: x2 → x3
2x3 - 12x2 + 17x - 2 = 2x3 - 4x2 - 8x2 + 16x + x - 2 = (2x2- 8x + 1)(x -2)

f) x3 - 3x + 2 = x3 - x - 2x + 2 = x(x + 1)(x - 1) - 2(x - 1) = (x - 1)(x2 + x - 2) = (x - 1)2(x + 2)

g) x3 + 3x2 + 6x + 4 = x3 + 3x2 + 3x + 1 + 3x + 3 = (x +1)3 + (x + 1) = (x + 1)(x2 + 2x + 4 )

h) x3 + 9x2 + 26x + 24 = x3 + 4x2 + 5x2 + 20x + 6x + 24 = (x + 4)(x2 + 5x + 6) = (x + 4)(x + 3)(x + 2)ư

Chúc bạn học tốt@@

17 tháng 9 2018

Bài 1 : 

\(a)\)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+3\right)\left(x-3\right)=15\)

\(\Leftrightarrow\)\(x^3-1-x\left(x^2-3^2\right)=15\)

\(\Leftrightarrow\)\(x^3-1-x^3+9x=15\)

\(\Leftrightarrow\)\(9x=16\)

\(\Leftrightarrow\)\(x=\frac{16}{9}\)

Vậy \(x=\frac{16}{9}\)

Chúc bạn học tốt ~ 

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

e) Sửa đề:

$2x^3-12x^2+17x-2=2x^3-4x^2-8x^2+16x+x-2$

$=2x^2(x-2)-8x(x-2)+(x-2)=(x-2)(2x^2-8x+1)$

f)

$x^3-3x+2=(x^3-x)-(2x-2)=x(x^2-1)-2(x-1)=x(x-1)(x+1)-2(x-1)$

$=(x-1)(x^2+x-2)=(x-1)(x^2-x+2x-2)=(x-1)[x(x-1)+2(x-1)]$

$=(x-1)(x-1)(x+2)=(x-1)^2(x+2)$

g)
$x^3+3x^2=x^2(x+3)$

h)

$x^3+9x^2+26x+24=(x^3+9x^2+27x+27)-x-3$

$=(x+3)^3-(x+3)=(x+3)[(x+3)^2-1]=(x+3)(x+3-1)(x+3+1)$

$=(x+3)(x+2)(x+4)$

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

a)

$4x^2-3x-1=4x^2-4x+x-1=4x(x-1)+(x-1)=(4x+1)(x-1)$

b)

$6x^2-11x^2=-5x^2$

c)

\(x^2-7xy+12y^2=x^2-4xy-3xy+12y^2\)

\(=x(x-4y)-3y(x-4y)=(x-3y)(x-4y)\)

d)

\(x^2-2xy+y^2+3x-3y=(x^2-2xy+y^2)+(3x-3y)\)

\(=(x-y)^2+3(x-y)=(x-y)(x-y+3)\)

19 tháng 10 2020

a) 5x3 - 40 = 5( x3 - 8 ) = 5( x - 2 )( x2 + 2x + 4 )

b) x2z + 4xyz + 4y2z = z( x2 + 4xy + 4y2 ) = z( x + 2y )2

c) 4x2 - y2 - 6x + 3y = ( 4x2 - y2 ) - ( 6x - 3y ) = ( 2x - y )( 2x + y ) - 3( 2x - y ) = ( 2x - y )( 2x + y - 3 )

d) x2 + 2x - 4y2 + 1 = ( x2 + 2x + 1 ) - 4y2 = ( x + 1 )2 - ( 2y )2 = ( x - 2y + 1 )( x + 2y + 1 )

e) 3x2 - 3y2 - 12x + 12y = 3( x2 - y2 - 4x + 4y ) = 3[ ( x2 - y2 ) - ( 4x - 4y ) ] = 3[ ( x - y )( x + y ) - 4( x - y ) ] = 3( x - y )( x + y - 4 )

f) x3 + 5x2 + 4x + 20 = x2( x + 5 ) + 4( x + 5 ) = ( x + 5 )( x2 + 4 )

g) x3 - x2 - 25x + 25 = x2( x - 1 ) - 25( x - 1 ) = ( x - 1 )( x2 - 25 ) = ( x - 1 )( x - 5 )( x + 5 )

19 tháng 10 2020

a) \(5x^3-40=5\left(x^3-8\right)=5\left(x-2\right)\left(x^2+2x+4\right)\)

b) \(x^2z+4xyz+4y^2z=z\left(x^2+4xy+4y^2\right)=z\left(x+2y\right)^2\)

c) \(4x^2-y^2-6x+3y=\left(4x^2-y^2\right)-\left(6x-3y\right)\)

\(=\left(2x-y\right)\left(2x+y\right)-3\left(2x-y\right)=\left(2x-y\right)\left(2x+y-3\right)\)

d) \(x^2+2x-4y^2+1=x^2+2x+1-4y^2\)

\(=\left(x+1\right)^2-4y^2=\left(x+2y+1\right)\left(x-2y+1\right)\)

e) \(3x^2-3y^2-12x+12y=3\left(x^2-y^2-4x+4y\right)\)

\(=3\left[\left(x^2-y^2\right)-\left(4x-4y\right)\right]=3\left[\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\right]\)

\(=3\left(x-y\right)\left(x+y+4\right)\)

f) \(x^3+5x^2+4x+20=\left(x^3+5x^2\right)+\left(4x+20\right)\)

\(=x^2.\left(x+5\right)+4\left(x+5\right)=\left(x^2+4\right)\left(x+5\right)\)

g) \(x^3-x^2-25x+25=\left(x^3-x^2\right)-\left(25x-25\right)\)

\(=x^2\left(x-1\right)-25\left(x-1\right)=\left(x-1\right)\left(x^2-25\right)\)

\(=\left(x-1\right)\left(x-5\right)\left(x+5\right)\)

2 tháng 11 2018

a) A = (x + 1)(y - 2) - (2 - y)2

= -[(x + 1)(2 - y) + (2 - y)2]

= -[(x + 1 - 2 + y)(2 - y)]

= -[(x - 1 + y)(2 - y)]

= (x - 1 + y)(y - 2)

2 tháng 11 2018

Bài 2:

a) \(A=\left(x+1\right)\left(y-2\right)-\left(2-y\right)^2\)

\(A=\left(x+1\right)\left(y-2\right)-\left(y-2\right)^2\)

\(A=\left(y-2\right)\left(x+1-y+2\right)\)

\(A=\left(y-2\right)\left(x-y+3\right)\)

b) \(B=x^2-6xy+9y^2+4x-12y\)

\(B=\left[x^2-2\cdot x\cdot3y+\left(3y\right)^2\right]+4\left(x-3y\right)\)

\(B=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(B=\left(x-3y\right)\left(x-3y+4\right)\)

Bài 3:

a) \(3\left(x-2\right)\left(x+3\right)-x\left(3x+1\right)=2\)

\(\left(3x^2+3x-18\right)-\left(3x^2+x\right)-2=0\)

\(3x^2+3x-18-3x^2-x-2=0\)

\(2x-20=0\)

\(x=10\)

b) \(6x^2+13x+5=0\)

\(6x^2+10x+3x+5=0\)

\(2x\left(3x+5\right)+\left(3x+5\right)=0\)

\(\left(3x+5\right)\left(2x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{-1}{2}\end{cases}}}\)