Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
x = 1800 – 800 = 1000
y = 1800 – 400 = 1400
b)
x = 700 (đồng vị)
y = 500 (so le trong)
c)
x = 1800 – 900 = 900
y = 1800 – 650 = 1150
Bài giải:
a)
x = 1800 – 800 = 1000
y = 1800 – 400 = 1400
b)
x = 700 (đồng vị)
y = 500 (so le trong)
c)
x = 1800 – 900 = 900
y = 1800 – 650 = 1150
Tứ giác ABCD là hình thang có đáy là AB và CD
⇒ AB // CD
+ Hình 21a): AB // CD ⇒ (Hai góc trong cùng phía bù nhau)
hay x + 80º = 180º ⇒ x = 100º.
Lại có: AB // CD ⇒ (Hai góc trong cùng phía bù nhau)
hay 40º + y = 180º ⇒ y = 140º.
+ Hình 21b):
AB // CD ⇒ x = 70º (Hai góc đồng vị bằng nhau)
AB // CD ⇒ y = 50º (Hai góc so le trong bằng nhau)
+ Hình 21c):
AB // CD ⇒ (Hai góc trong cùng phía bù nhau)
hay x + 90º = 180º ⇒ x = 90º
AB // CD ⇒ (Hai góc trong cùng phía bù nhau)
hay y + 65º = 180º ⇒ y = 115º.
a) Ta có : A + B + C + D = 360o (4 góc trong 1 tứ giác)
Mà : A = 110o ; B = 120o ; C = 80o
Nên : 110o + 120o + 80o + D = 360o
Suy ra : D = 360o - 110o - 120o - 80o
Vậy D = 50o
Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.
Theo giả thiết ABCD là hình bình hành nên ta có:
ˆDAB=ˆDCB,ˆADC=ˆABC (1)
Theo định lí tổng các góc của một tứ giác ta có:
ˆDAB+ˆDCB+ˆADC+ˆABC=360o (2)
Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o
Vì AG là tia phân giác ˆDAB (giả thiết)
⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)
Vì BG là tia phân giác ˆABC (giả thiết)
⇒⇒ ˆABG=1/2ˆABC
Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o
Xét ΔAGB= có:
ˆBAG+ˆABG=90o (3)
Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:
ˆBAG+ˆABG+ˆAGB=180o (4)
Từ (3) và (4) ⇒ˆAGB=90o
Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o
Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)
Xét tam giác ABC ta có:
ON // AB (gt)
=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)
Xét tam giác ABD ta có:
OM // AB (gt)
=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)
Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)
Vậy OM = ON.
Xét ∆ABD và ∆BDC có:
=> ∆ABD ∽ ∆BDC(trường hợp 3)
=> BD = √(AB.DC) = √(12,5.8,5) = √356,25 => BD = 18,9 cm
Lời giải
a)
Ta có \(\left\{{}\begin{matrix}MD=MB\\NA=NC\end{matrix}\right.\) \(\Rightarrow\)MN//DC
\(\Rightarrow\Delta OMN\approx\Delta ODC\approx OBA\)
Tỷ số đồng dạng
\(\dfrac{OM}{OD}=\dfrac{MN}{DC}=\dfrac{ON}{OC}\)\(\Rightarrow MN=\dfrac{OM}{OD}.DC=\dfrac{1}{4}.5,6=1,4\left(cm\right)\)
\(\dfrac{OM}{OB}=\dfrac{MN}{AB}\Rightarrow AB=\dfrac{OB}{OM}.MN=2MN=2,8\left(cm\right)\)
b)
\(\left\{{}\begin{matrix}CD=4MN\\AB=2MN\end{matrix}\right.\)
\(\Rightarrow\dfrac{CD-AB}{2}=\dfrac{4MN-2MN}{2}=MN\)