
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bình phương 3 vế :
\(\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\left(\frac{z}{5}\right)^2\)<=> \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)<=> \(\frac{2}{2}.\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)<=> \(\frac{2x^2}{8}=\frac{y^2}{9}=\frac{z^2}{25}\)
áp dụng t/c dãy tỉ số bằng nhau
\(\frac{2x^2}{8}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{2x^2+y^2+z^2}{8+9+25}\)\(=\)\(\frac{-72}{42}=\frac{-12}{7}\)
\(\frac{x}{2}=\frac{-12}{7}\Leftrightarrow x=\frac{-24}{7}\)
\(\frac{y}{3}=\frac{-12}{7}\Leftrightarrow y=\frac{-36}{7}\)
\(\frac{z}{5}=\frac{-12}{7}\Leftrightarrow z=\frac{-60}{7}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=K\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=K\\\frac{y}{3}=K\\\frac{z}{5}=K\end{cases}}\Rightarrow\hept{\begin{cases}x=2K\\y=3K\\z=5K\end{cases}}\)
Theo đề bài có : 2x2 + y2 + z2 = ( -72 )
Mà \(x^2\ge0\forall x\)nên \(2x^2\ge0\forall x\); \(y^2\ge0\forall y\); \(z^2\ge0\forall z\)
=> \(2x^2+y^2+z^2\ge0\forall x,y,z\)
=> Ko có giá trị thỏa mãn x,y,z


1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
Vì \(\left(3x-5\right)^{2010}\ge0\forall x\); \(\left(y-1\right)^{2012}\ge0\forall y\); \(\left(x-z\right)^{2014}\ge0\forall x,z\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)
Vậy \(x=z=\frac{5}{3}\)và \(y=1\)
