Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x-3=xy+2y => x-3=y.(x+2)
=> y=\(\frac{x-3}{x+2}=\frac{x+2-5}{x+2}=1-\frac{5}{x+2}\)
Để y là số tự nhiên thì 5 chia hết cho x+2
=> x+2 thuộc Ư(5) => x+2 thuộc {1;5}
Lại có để y là số tự nhiên thì 1>=5/(x+2)
=> 5/(x+2)=1=> x+2=5=> x=3
=> y=0
Vậy (x;y)=(3;0)
c. (2xy-6x)+y=13
=> 2x(y-3)+(y-3)=10
=> (y-3)(2x+1)=10=1.10=10.1=2.5=5.2
Mà 2x+1 là số lẻ => 2x+1 thuộc {1;5}
• 2x+1=1 thì y-3=10 => x=0; y=13
• 2x+1=5 thì y-3=2 => x=2; y=5
a, Do UCLN là 5 nên a, b chia hết cho 5 => tận cùng là 0 hoặc 5
Ta có 20 = 15 + 5 = 18 + 2=19+1=17+3=16+4=14+6=13+7=12+8=11+9
=> 2 số a và b là 15 và 5 hoặc 5 và 15
Bài sau làm tương tự em nhé :)
bài 2 :
tôi làm từng phần 1 nhé
bài 2 :
a)<=>(x+1)+3 chia hết x+4
=>3 chia hết x+4
=>x+4\(\in\){1,-1,3,-3}
=>x\(\in\){-3,-6,-1,-7}
a) x+15 là bội của x+3
\(\Rightarrow\)x+15\(⋮\)x+3
\(\Rightarrow\)x+3+12\(⋮\)x+3
x+3\(⋮\)x+3
\(\Rightarrow\)12\(⋮\)x+3
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
\(\Rightarrow x\in\left\{-4;-2;-5;-1;-6;0;-7;1;-15;9\right\}\)
Vậy x\(\in\){-4;-2;-5;-1;-6;0;-7;1;-15;9}
b) (x+1).(y-2)=3
\(\Rightarrow\)x+1 và y-2 thuộc Ư(3)={1;-1;3;-3}
Có :
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy (x;y)\(\in\){(0;1);(-2;-5);(2;-1);(-4;-3)}
Câu c tương tự câu b
g) Ta có : (x,y)=5
\(\Rightarrow\hept{\begin{cases}x⋮5\\y⋮5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=5m\\y=5n\\\left(m,n\right)=1\end{cases}}\)
Mà x+y=12
\(\Rightarrow\)5m+5n=12
\(\Rightarrow\)5(m+n)=12
\(\Rightarrow\)m+n=\(\frac{12}{5}\)
Bạn có thể xem lại đề được không ạ? Vì đến đây 12 không chia hết cho 5 nhé! Phần h bạn nên viết lại đề vì ƯCLN=[x,y]=8 tớ không hiểu lắm...
Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau
\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)
Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)
Không thỏa mãn điều kiện vì 12 không chia hết cho 5
Ta có : \(x=8x',y=8y'\)(như trên)
Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)
Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)
Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)
a)Vì ƯCLN(x;y) = 5
=> \(\hept{\begin{cases}x=5k\\y=5t\end{cases}\left(k;t\inℕ^∗\right)}\)
Lại có : x + y = 12
<=> 5k + 5t = 12
=> 5(k + t) = 12
=> k + t = 2,4
mà \(k;t\inℕ^∗\)
=> \(k;t\in\varnothing\)
=> x ; y \(\in\varnothing\)
b) Vì ƯCLN(x;y) = 8
=> \(\hept{\begin{cases}x=8k\\y=8t\end{cases}\left(k;t\inℕ^∗\right)}\)
Lại có x + y = 32
<=> 8k + 8t = 32
=> k + t = 4
mà \(k;t\inℕ^∗\)
Lập bảng xét các trường hợp :
k | 1 | 3 | 2 |
t | 3 | 1 | 2 |
x | 8 | 24 | 16 (loại) |
y | 24 | 8 | 16 (loại) |
Vậy các cặp (x;y) thỏa mãn là : (24 ; 8); (8;24)
a) Ta có \(y=\dfrac{2x+45}{x+10}=\dfrac{2.\left(x+10\right)+25}{x+10}=2+\dfrac{25}{x+10}\)
Vì \(x\inℕ\Rightarrow x\ge0\)
Khi đó \(x+10\ge10\Leftrightarrow\dfrac{1}{x+10}\le\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{25}{x+10}\le\dfrac{25}{10}\Leftrightarrow2+\dfrac{25}{x+10}\le2+\dfrac{25}{10}=4,5\)
\(\Leftrightarrow y\le4,5\) (2)
Lại có \(y=2+\dfrac{25}{x+10}>2\forall x\inℕ\) (1)
Từ (1) và (2) => \(2< y\le4,5\)
mà \(y\inℕ\Rightarrow y\in\left\{3;4\right\}\)
Khi y = 3 => \(2+\dfrac{25}{x+10}=3\Leftrightarrow\dfrac{25}{x+10}=1\Leftrightarrow x=15\)
Khi x = 4 => \(2+\dfrac{25}{x+10}=4\Leftrightarrow\dfrac{25}{x+10}=2\Leftrightarrow x=\dfrac{5}{2}\left(\text{loại}\right)\)
Vậy (x;y) = (15;3) là nghiệm phương trình