\(\dfrac{x}{19}=\dfrac{y}{21}\) va 2x - y = 34

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2017

Ta có:

\(\dfrac{x}{19}=\dfrac{y}{21}\Leftrightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{38}=2\Rightarrow x=38\\\dfrac{y}{21}=2\Rightarrow y=42\end{matrix}\right.\)

Vậy ..............

Chúc bạn học tốt!

17 tháng 10 2017

\(\dfrac{x}{19}\)=\(\dfrac{y}{21}\) và 2x - y = 34

+ Ta có : \(\dfrac{x}{19}\)=\(\dfrac{y}{21}\)\(\Rightarrow\)\(\dfrac{2.x}{2.19}\)=\(\dfrac{y}{21}\)\(\Rightarrow\dfrac{2.x}{38}\)=\(\dfrac{y}{21}\) và 2x-y=34

+ Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2.x}{38}\)=\(\dfrac{y}{21}\)=\(\dfrac{2.x-y}{38-21}\)=\(\dfrac{34}{17}\)=2

\(\Rightarrow\left\{{}\begin{matrix}x=2.38=76\\y=2.21=42\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)

Vậy x=38 và y=42 cần tìm.

2 tháng 8 2018

Biểu đồBiểu đồ

2 tháng 8 2018

a)Vì \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)nên \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{x}{28}\).

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

⇒2x = 3.30 = 90 ⇒ x = 45

3y = 3.60 = 180 ⇒ y = 60

z = 3.28 = 84

Ý b) có gì đó sai sai ?

c)Ta có :

\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Áp dụng t/c dãy tỉ số = nhau, ta có :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

⇒x = 5.15 = 75

y = 5.10 = 50

z = 5.6 = 30

d)Ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\left(k\in Z\right)\)

⇒ x = 2k ; y = 3k ; z = 5k

⇒ xyz = 2k.3k.5k = 30k3 = 810

⇒ k = 3 Vậy x = 3.2 = 6; y = 3.3 = 9; z = 3.5 = 15
16 tháng 8 2015

Áp dụng dãy tỉ só bằng nhau ta có  :

     \(\frac{x}{19}=\frac{y}{21}=\frac{2x}{38}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)

=> x = 2.19 = 38 

=> y = 2.21 = 42 

2 tháng 8 2017

Áp dụng tinshh chất dãy tỉ số bằng nhau ; ta được :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\)

Do đó :

\(\dfrac{x}{3}=2\Rightarrow x=2.3=6\)

\(\dfrac{y}{4}=2\Rightarrow y=2.4=8\)

\(\dfrac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy x = 6 ; y = 8 ; z = 10

2 tháng 8 2017

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có:

\(\dfrac{2x}{6}=\dfrac{3y}{12}=\dfrac{5z}{25}=\dfrac{2x+3y+5z}{6+12+25}=\dfrac{86}{43}=2\) \

\(\Rightarrow x=2.3=6\)

\(y=2.4=8\)

\(z=2.5=10\)

11 tháng 7 2017

a) Ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\) và x + y = 60

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)

\(\dfrac{x}{17}=3\Rightarrow x=17.3=51\)

\(\dfrac{y}{3}=3\Rightarrow y=3.3=9\)

Vậy x = 51; y = 9

b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

\(\dfrac{x}{19}=2\Rightarrow x=2.19=38\)

\(\dfrac{y}{21}=2\Rightarrow y=21.2=42\)

Vậy x = 38; y = 42.

11 tháng 7 2017

Ta có : \(\dfrac{x}{y}\) = \(\dfrac{17}{3}\) \(\Leftrightarrow\) \(\dfrac{x}{17}\) = \(\dfrac{y}{3}\)\(x+y\) \(=60\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)

\(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}\) = \(\dfrac{60}{20}\) = \(3\)

\(+\)) \(\dfrac{x}{17}\) \(=\)\(3\) \(\Rightarrow\) \(x=51\)

+ ) \(\dfrac{y}{3}\) \(=3\) \(\Rightarrow\) \(y=9\)

Vậy \(x=51\) ; \(y=9\)

Ta có : \(\dfrac{x}{19}\) = \(\dfrac{y}{21}\) \(\Leftrightarrow\) \(\dfrac{2x}{38}\) \(=\) \(\dfrac{y}{21}\)\(2x-y=34\)

\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)

\(\dfrac{2x}{38}\)\(=\) \(\dfrac{y}{21}\) = \(\dfrac{2x-y}{38-21}\) \(=\) \(\dfrac{34}{17}\) \(=\) \(2\)

+ ) \(\dfrac{2x}{38}\) = \(\dfrac{x}{19}\) \(=\) \(2\) \(\Rightarrow\) \(x=38\)

+ ) \(\dfrac{y}{21}\) = 2 \(\Rightarrow\) \(x=42\)

Vậy \(x=38\) ; \(x=42\)

7 tháng 11 2018

1. Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{6}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{x+y-z}{6+5-3}=\dfrac{54}{8}=\dfrac{27}{4}\)

+\(\dfrac{x}{6}=\dfrac{27}{4}\Rightarrow x=\dfrac{27.6}{4}=\dfrac{81}{2}\)

+\(\dfrac{y}{5}=\dfrac{27}{4}\Rightarrow y=\dfrac{27.5}{4}=\dfrac{135}{4}\)

+\(\dfrac{z}{3}=\dfrac{27}{4}\Rightarrow z=\dfrac{27.3}{4}=\dfrac{81}{4}\)

Vậy \(x=\dfrac{81}{2};y=\dfrac{135}{4};z=\dfrac{81}{4}\)

7 tháng 11 2018

2,Áp dụng tc dãy TSBN, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{c}{4}=\dfrac{x+2y-3c}{2+2.3+3.4}=\dfrac{-20}{20}=-1\)

+\(\dfrac{x}{2}=-1\Rightarrow x=-1.2=-2\)

+\(\dfrac{y}{3}=-1\Rightarrow y=-1.3=-3\)

+\(\dfrac{c}{4}=-1\Rightarrow c=-1.4=-4\)

Vậy \(x=-2;y=-3;c=-4\)

22 tháng 10 2017

a. Đặt \(\dfrac{x}{-3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=-3k\\y=5k\end{matrix}\right.\)

\(x.y=\dfrac{-5}{27}\)

hay \(-3k.5k=\dfrac{-5}{27}\)

\(\Rightarrow-15.k^2=\dfrac{-5}{27}\)

\(\Rightarrow k^2=\dfrac{1}{81}=\left(\pm\dfrac{1}{9}\right)^2\)

Với \(k=\dfrac{1}{9}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{5}{9}\end{matrix}\right.\)

Với \(k=\dfrac{-1}{9}\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{-5}{9}\end{matrix}\right.\)

Vậy.......

b. Từ \(\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{3}=\dfrac{z}{5}\end{matrix}\) \(\Rightarrow\begin{matrix}\dfrac{x}{9}=\dfrac{y}{12}\\\dfrac{y}{12}=\dfrac{z}{20}\end{matrix}\) \(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}=\dfrac{x-y+z}{9-12+20}=\dfrac{32}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{32}{17}\Rightarrow x=\dfrac{32.9}{17}=\dfrac{288}{17}\\\dfrac{y}{12}=\dfrac{32}{17}\Rightarrow y=\dfrac{32.12}{17}=\dfrac{384}{17}\\\dfrac{z}{20}=\dfrac{32}{17}\Rightarrow z=\dfrac{32.20}{17}=\dfrac{640}{17}\end{matrix}\right.\)

Vậy.........

2 tháng 8 2017

Đặt:

\(\dfrac{x}{4}=\dfrac{y}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=4k\\y=5k\end{matrix}\right.\)

\(\Rightarrow x+y=4k+5k\)

\(\Rightarrow9k=180\Rightarrow k=20\)

\(\Rightarrow\left\{{}\begin{matrix}x=20.4=80\\y=20.5=100\end{matrix}\right.\)

Ta có :

\(\dfrac{x}{4}=\dfrac{y}{5}\) \(x+y=180\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{x+y}{4+5}=\dfrac{180}{9}=20\)

\(\left[{}\begin{matrix}\dfrac{x}{4}=20\Rightarrow x=80\\\dfrac{y}{5}=20\Rightarrow y=100\end{matrix}\right.\)

27 tháng 9 2017

1. \(\dfrac{x}{19}=\dfrac{y}{21};2x-y=34\)
Có: \(\dfrac{x}{19}=\dfrac{y}{21}\)
=> \(\dfrac{2x}{38}=\dfrac{y}{21}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=> \(\dfrac{x}{19}=2=>x=2.19=38\)
=> \(\dfrac{y}{21}=2=>y=2.21=42\)
Vậy x= 38 ; y= 42
2. \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\);\(2x+3y-z=186\)
Có: \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
=> \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)
=> \(\dfrac{x}{15}=3=>x=3.15=45\)
=>\(\dfrac{y}{20}=3=>y=3.20=60\)
=> \(\dfrac{z}{28}=3=>z=3.28=84\)
Vậy x=45;y=60;z=84

27 tháng 9 2017

1) \(\dfrac{x}{19}=\dfrac{y}{21}\) và 2x -y =34

Từ \(\dfrac{x}{19}=\dfrac{y}{21}=>\dfrac{2x}{38}=\dfrac{y}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)

=>\(\dfrac{2x}{38}=2=>2x=2.38=>2x=76=>x=76:2=>x=38\)

=>\(\dfrac{y}{21}=2=>y=2.21=>y=42\)

Vậy x=38; y=42

2)\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)và 2x+3y-z=186

Từ \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{186}{62}=3\)

=>\(\dfrac{2x}{30}=3=>2x=3.30=>2x=90=>x=90:2=>x=45\)

=>\(\dfrac{3y}{60}=3=>3y=3.60=>3y=180=>y=180:3=>y=60\)

=>\(\dfrac{z}{28}=3=>z=3.28=>z=84\)

Vậy x=45; y=60; z=84

3)\(\dfrac{x}{3}=\dfrac{y}{4}\)\(\dfrac{y}{5}=\dfrac{z}{7}\)và 2x+3y-z=372

Từ\(\dfrac{x}{3}=\dfrac{y}{4}=>\dfrac{x}{15}=\dfrac{y}{20}\)

\(\dfrac{y}{5}=\dfrac{z}{7}=>\dfrac{y}{20}=\dfrac{z}{28}\)

=>\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=>\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}\)

Áp dụng t/c của dãy tỉ số bằng nhau,ta có:

\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{28}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{372}{62}=6\)

=>\(\dfrac{2x}{30}=6=>2x=6.30=>2x=180=>x=180:2=>x=90\)

=>\(\dfrac{3y}{60}=6=>3y=6.60=>3y=360=>y=360:3=>y=120\)

=>\(\dfrac{z}{28}=6=>z=6.28=>z=148\)

Vậy x=90; y=120; z=148

21 tháng 12 2018

Ta có: \(\dfrac{2x}{3}\) = \(\dfrac{3y}{4}\) = \(\dfrac{4z}{5}\) suy ra: \(\dfrac{2x}{60}\) = \(\dfrac{3y}{60}\) = \(\dfrac{4z}{60}\)

Suy ra:\(\dfrac{x}{30}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{15}\)

Theo bài ra, ta có:\(\dfrac{x}{30}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{15}\)

mà x-y-z = -49

Áp dụng ính chất của dãy ti số bằng nhau, ta có:

\(\dfrac{x}{30}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{15}\) = \(\dfrac{x-y-z}{30-20-15}\) = \(\dfrac{-49}{-5}\)= 9,8

Suy ra: \(\dfrac{x}{30}\) = 9,8 suy ra: x = 9,8. 30 = 294

\(\dfrac{y}{20}\) = 9,8 suy ra: y = 9,8. 20 = 196

\(\dfrac{z}{15}\) = 9,8 suy ra: z = 9,8. 15=147

vậy x = 294; y = 169 và z = 147

chúc bn hk tốthihi

(câu trả lời của mk sai thik mong thông cảm nhé)