Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.a)n2(n+1)+2n(n+1)=(n+1)(n2+2n)=n(n+1)(n+2)
n,(n+1),(n+2) là ba số nguyên liên tiếp nên chia hết cho 2 và 3
\(\Rightarrow\)n(n+1)(n+2) chia hết cho 6
4 Chứng minh rằng:
a)\(n^2+\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
Ta có:
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=n^3+3n^2+2n\)
\(=n\left(n^2+3n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Ta thấy n , n+1 và n+2 là ba số tự nhiên liên tiếp
=> n(n+1) (n+2)\(⋮\)6
=> đpcm
b)\(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
Ta có:
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]\)
\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(=\left(2n-1\right).2\left(n-1\right).2n\)
\(=4n\left(2n-1\right)\left(n-1\right)\)
=>\(4n\left(2n-1\right)\left(n-1\right)⋮4\left(1\right)\)
Mà(2n-1)(n-1)=(n+n-1)(n-1)
=>\(\left(2n-1\right)\left(n-1\right)⋮2\left(2\right)\)
Từ (1) và (2)=> Đpcm
c)\(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
Câu hỏi của Ngoc An Pham - Toán lớp 8 | Học trực tuyến
Chúc bạn học tốt!^^
Giải phương trình:
\(4x^2-9-\left(2x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-\left(2x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x-3-2x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right).\left(-2\right)=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Vậy nghiệm của phương trình là \(x=\dfrac{-3}{2}\) .
\(x^3+x^2-4x=4\)
\(\Leftrightarrow x^3+x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Vậy tập nghiện của phương trình là S= { -2; -1; 2}.
\(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x^2-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S= {-1; 1}.
\(\left(3x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(3x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(3x-3-x-5\right)\left(3x-3+x+5\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(4x+2\right)=0\)
\(\Leftrightarrow2\left(x-4\right).2\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-1}{2};4\right\}\) .
\(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=\dfrac{-2}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-2}{3};8\right\}\) .
\(x^2\left(x-1\right)-\left(4x^2+8x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2+2x-1\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy nghiệm của phương trình là x=1.
(\(27^{10}-5.81^4.3^{12}+4.9^8.3^8\)):\(\left(41.3^{24}\right)\)
\(=\left[\left(3^3\right)^{10}-5.\left(3^4\right)^4.3^{12}+4.\left(3^2\right)^8.3^8\right]:\left(41.3^{24}\right)\)
\(=\left(3^{30}-5.3^{28}+4.3^{24}\right):\left(41.3^{24}\right)\)
\(=\left[3^{24}\left(3^6-5.3^4+4\right)\right]:\left(41.3^{24}\right)\)
\(=\left(3^{24}.328\right):\left(41.3^{24}\right)\)
\(=328:41=8\)
Bài 1:
a; (\(x+1\)).(\(x+2\)) - (\(x-1\)).(\(x-5\)) = 0
\(x^2\) + 2\(x\) + \(x+2\) - \(x^2\) + 5\(x\) + \(x\) - 5 = 0
(\(x^2\) - \(x^2\)) + (2\(x\) + \(x+5x+x\))- (5 -2) = 0
0 + (3\(x\) + 5\(x\) + \(x\)) + 0 - 3 = 0
8\(x\) + \(x\) - 3 = 0
9\(x\) = 3
\(x=\dfrac{3}{9}\)
Vậy \(x=\dfrac{1}{3}\)
b; (2\(x\) - 1)2 + 4.(5 - \(x\)) = 15
4\(x^2\) - 4\(x\) + 1 + 20 - 4\(x\) = 15
4\(x^2\) - (4\(x\) + 4\(x\)) + (1 + 20 - 15) = 0
4\(x^2\) - 8\(x\) + 6 = 0
4.(\(x^2\) - 2\(x\) + 1) + 2 = 0
4(\(x-1\))2 + 2 = 0
Vì 4.(\(x-1\))2 ≥ 0 ⇒ 4.(\(x-1\))2 + 2 ≥ 3 > 0 (\(\forall x\))
Vậy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận \(x\) \(\in\) \(\varnothing\)
Bài 4 :
a) \(x^3+x^2y-xy^2-y^3=x^2\left(x+y\right)-y^2\left(x+y\right)=\left(x^2-y^2\right)\left(x+y\right)=\left(x-y\right)\left(x+y\right)^2\)
b)\(x^2y^2+1-x^2-y^2=\left(x^2y^2-x^2\right)-\left(y^2-1\right)=x^2\left(y^2-1\right)-\left(y^2-1\right)=\left(x^2-1\right)\left(y^2-1\right)=\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)\)
c) \(x^2-y^2-4x+4y=\left(x^2-y^2\right)-\left(4x-4y\right)=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)=\left(x-y\right)\left(x+y-4\right)\)
d)
\(x^2-y^2-2x-2y=\)\(\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)
e) Trùng câu d
f) \(x^3-y^3-3x+3y=\left(x-y\right)\left(x^2-xy+y^2\right)-3\left(x-y\right)=\left(x-y\right)\left(x^2-xy+y^2-3\right)\)
Bài 5:
a) \(x^3-x^2-x+1=0\)
\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) Sửa đề : \(\left(2x-3\right)^2-\left(4x^2-9\right)=0\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(-6\right)=0\)\
\(\Leftrightarrow2x-3=6\)
\(\Leftrightarrow x=\frac{9}{2}\)
vậy........
c) \(x^4+2x^3-6x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)+\left(2x^3-6x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)+2x\left(x^2-3\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x^2=3\Leftrightarrow x=\pm\sqrt{3}\)
Vậy
d) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ........
1) x = -1\(\frac{1}{2}\)
2) x = \(\pm2\); x = -1
3) x = -1 ; x = 1 ; x = -2i ; x = 2i
4) x \(\approx-1,59385382059801\) ; x \(\approx0,405545399146862\); x \(\approx6,18830832902225\)
Kết quả rút gọn: Unknown!!!
1)
a) \(\Leftrightarrow\left(4x-1\right)^2=9\Leftrightarrow4x-1=+-3\Leftrightarrow4x=1+-3\Leftrightarrow x=\frac{1+-3}{4}\)
b) \(x^3-3x^2+3x-1+3x^2-12x+1=0\Leftrightarrow x^3-9x=0\Leftrightarrow x^2\left(x-9\right)=0\)
=> x=0 hoặc x=9
c) \(x^2-6x+9=25\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow x-3=+-5\Leftrightarrow x=3+-5\)
d) câu này là chia hết cho 32 hả??
a/ \(x^2+y^2=x^2+y^2+2xy-2xy =\left(x+y\right)^2-2xy\)
b/ mình không chắc nữa
bài 3
a/ \(9x^2-49=0 \Leftrightarrow x^2=\frac{49}{9} \Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)
b/ \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x+1\right)\left(x-1\right)-27=0 \Leftrightarrow x^3+27-x\left(x^2-1\right)-27=0\)
\(\Leftrightarrow x^3-x^3+x=0\Leftrightarrow x=0\)
c/\(\left(x-1\right)\left(x+2\right)-x-2=0 \Leftrightarrow \left(x-1\right)\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
d/ \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\)
\(\Leftrightarrow4x+25=0 \Leftrightarrow x=\frac{-25}{4}\)
e/ mình lười qá ko viết đề đâu
\(\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\)
\(\Leftrightarrow-3x+1=7 \Leftrightarrow x=-2\)
có gì sai bn sửa lại nha
Ta có:\(N=\frac{4x+1}{4x^2+2}\Leftrightarrow N.4x^2+2N=4x+1\)
\(x^2\cdot4N-2.2x+\left(2N+1\right)=0\)
Xét \(\Delta'=4-\left(2N+1\right)\cdot4N=-8N^2-4N+4\ge0\)
Đến đây bạn chặn N là được nhé ! Ắt sẽ có Max
a) \(x^2+2x+4^n-2^{n+1}+1=0\)
\(\Leftrightarrow x^2+2x+1+2^{2n}+2^{n+1}+1=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(2^{2n}-2\cdot2^n+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+1=0\\2^n-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\n=0\end{cases}}}\)
Vậy x=-1 và n=0
<=>(32)n-4.3n+4+4x2+4x+1=0
<=>(3n)2-2.3n.2+4+(2x+1)2=0
<=>(3n-2)2+(2x+1)2=0
<=>3n-2=0 và 2x+1=0
<=>3n=2 và x=-1/2
=>ko có giá trị của n thỏa mãn 3n=2