Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x.5^{x+1}.5^{x+2}\le10^{18}:2^{18}\)
\(5^x.5^x.5.5^x.5^2\le5^{18}.2^{18}:2^{18}\)
\(5^{3x}.5^3\le5^{18}\)
\(5^3.5^x.5^3\le5^{18}\)
\(5^x\le5^{18}:5^6\)
\(5^x\le5^{12}\)
\(\Rightarrow x\le12\)
\(\Rightarrow x\in\left\{0,1,2,3,4,5,6,7,8,9,10,11,12\right\}\)
\(\frac{x}{7}=\frac{x+1}{14}\Leftrightarrow14x=7x+7\Leftrightarrow7x=7\Leftrightarrow x=1\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le x\le\frac{15}{4}+\frac{18}{8}\)
\(\Leftrightarrow1\le x\le6\Leftrightarrow x=1;2;3;4;5;6\)
\(\frac{1}{2}+\frac{-3}{5}+\frac{1}{10}\le x\le\frac{8}{3}+\frac{14}{6}\)
\(\Leftrightarrow\frac{1}{2}-\frac{3}{5}+\frac{1}{10}\le x\le\frac{8}{3}+\frac{14}{6}\)
\(\Leftrightarrow0\le x\le5\Leftrightarrow x=0;1;2;3;4;5\)
\(\frac{x}{7}=\frac{x+1}{14}\)
=> \(\frac{x\cdot2}{7\cdot2}=\frac{x+1}{14}\)
=> \(2x=x+1\)
=> \(2x-x-1=0\)
=> \(1x-1=0\)
=> \(x=1\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le x\le\frac{15}{4}+\frac{18}{8}\)
=> \(1\le x\le6\)
=> \(x=\left\{1;2;3;4;5;6\right\}\)
\(\frac{1}{2}+\frac{-3}{5}+\frac{1}{10}\le x\le\frac{8}{3}+\frac{14}{6}\)
=> \(0\le x\le5\)
=> \(x=\left\{0;1;2;3;4;5\right\}\)
a) Rút gọn phân số đi
\(\Rightarrow-4\le x< -3\)
\(\Rightarrow x\in\left\{-4;\right\}\)
b) Tương tự nhé
a, -36/9=-4
-15/5=-3
=> -4 bé hơn hặc bằng -3
=> A={-4}
b, -27/3=-9=-63/7
12/14=6/7
=> A={-62/7;-61/7;...;5/7;6/7}
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right)2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2x-\left(2x-2\right)}{\left(2x-2\right)2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{-1}{2x}=\dfrac{-1}{4}\)
\(\Rightarrow x=2\)
Ta có: \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}\right)=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2x}\right)=\dfrac{1}{8}\Rightarrow\dfrac{1}{2}.\dfrac{x-1}{2x}=\dfrac{1}{8}\Rightarrow\dfrac{x-1}{4x}=\dfrac{1}{8}\)
\(\Rightarrow8\left(x-1\right)=4x\Rightarrow8x-8=4x\Rightarrow4x=8\Rightarrow x=2\)
1a) Không giảm tính tổng quát, giả sử \(a\ge b\) suy ra \(a=b+m\) \(\left(m\ge0\right)\)
Ta có \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=\frac{b+m}{b+m}=1+\frac{b+m}{b+m}\)
\(=1+1=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\) (dấu \(=\Leftrightarrow m=0\Leftrightarrow a=b\))
Vậy tổng của một phân số dương với số nghịch đảo của nó lớn hơn hoặc bằng 2.
a)Tham khảo:Câu hỏi của Yêu Chi Pu - Toán lớp 6 - Học toán với OnlineMath
b) \(P=\frac{3x}{y}+\frac{3y}{x}=3\left(\frac{x}{y}+\frac{y}{x}\right)\ge3.2=6\)
\(Q=3\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\ge3\left(2+2+2\right)=18\)
Ta có : \(\left|5x-2\right|\ge0\)
|5x-2|<0 (vô lí)
\(\Rightarrow\left|5x-2\right|=0\)
5x-2=0
5x=0+2
5x=2
x=2:5
\(x=\frac{2}{5}\notinℤ\)
Vậy không tìm được giá trị của x thỏa mãn bài toán.