Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) điều kiện : \(x\in Z;x\ne4\)
\(A=\dfrac{5x-19}{x-4}=\dfrac{5x-20+1}{x-4}=5+\dfrac{1}{x-4}\) lớn nhất
\(\Leftrightarrow\dfrac{1}{x-4}\) lớn nhất \(\Leftrightarrow x-4\) là số nguyên dương bé nhất khác 0 là 1
ta có : \(x-4=1\Leftrightarrow x=5\) khi đó \(A=5+\dfrac{1}{x-4}=5+\dfrac{1}{5-4}=5+\dfrac{1}{1}=5+1=6\)
vậy GTLN của A là 6 khi \(x=5\)
b) điều kiện \(x\in Z;x\ne-3\)
\(B=\dfrac{x-13}{x+3}=\dfrac{x+3-16}{x+3}=1-\dfrac{16}{x+3}\) bé nhất
\(\Leftrightarrow\dfrac{16}{x+3}\) lớn nhất \(\Leftrightarrow x+3\) là số dương bé nhất khác 0 là 1
ta có : \(x+3=1\Leftrightarrow x=-2\) khi đó \(B=1-\dfrac{16}{x+3}==1-\dfrac{16}{-2+3}=1-\dfrac{16}{1}=1-16=-15\)
vậy GTNN của B là \(-15\) khi \(x=-2\)
c) điều kiện : \(x\in Z;x\ne-1\)
\(C=\dfrac{2x+4}{x+1}=\dfrac{2x+2+2}{x+1}=2+\dfrac{2}{x+1}\) bé nhất
\(\Leftrightarrow\dfrac{2}{x+1}\) bé nhất \(\Leftrightarrow x+1\) là số âm lớn nhất là \(-1\)
ta có : \(x+1=-1\Leftrightarrow x=-2\) khi đó \(C=2+\dfrac{2}{x+1}=2+\dfrac{2}{-2+1}=2+\dfrac{2}{-1}=2-2=0\)
vậy GTNN của C là 0 khi \(x=-2\)
\(A=\dfrac{5x-19}{x-4}\)
\(MAX_A\Rightarrow A\in Z^+\Rightarrow x-4\in Z^+\)
\(MAX_A\Rightarrow MIN_{x-4}\)
\(\Rightarrow x-4=1\Rightarrow x=5\)
Vậy \(MAX_A=\dfrac{5.5-19}{5-4}=6\)
\(B=\dfrac{x-13}{x+3}\)
\(MIN_B\Rightarrow B\in Z^-\Rightarrow x+3\in Z^-\)
\(MIN_B\Rightarrow MAX_{x+3}\)
\(\Rightarrow x+3=-1\Rightarrow x=-4\)
Vậy \(MIN_B=\dfrac{-4-13}{-4+3}=17\)
\(C=\dfrac{2x+4}{x+1}\)
\(MIN_C\Rightarrow C\in Z^-\Rightarrow x+1\in Z^-\)
\(MIN_C\Rightarrow MAX_{x+1}\)
\(\Rightarrow x+1=-1\Rightarrow x=-2\)
Vậy \(MIN_C=\dfrac{-2.2+4}{-2+1}=0\)
B1: Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{a+b}{a+b+2c+2d}=\frac{1}{3}\)
\(\Rightarrow\frac{a+b+2c+2d}{a+b}=3\)\(\Rightarrow1+\frac{2\left(c+d\right)}{a+b}=3\)\(\Rightarrow\frac{2\left(c+d\right)}{a+b}=2\)\(\Rightarrow\frac{c+d}{a+b}=1\)(1)
Lại có: \(\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{b+c}{b+c+2\left(a+d\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{b+c+2\left(a+d\right)}{b+c}=3\)\(\Rightarrow1+\frac{2\left(a+d\right)}{b+c}=3\)\(\Rightarrow\frac{2\left(a+d\right)}{b+c}=2\)\(\Rightarrow\frac{a+d}{b+c}=1\)(2)
Ta có: \(\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{c+d}{c+d+2\left(a+b\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{2\left(a+b\right)+c+d}{c+d}=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}+1=3\)\(\Rightarrow\frac{2\left(a+b\right)}{c+d}=2\)\(\Rightarrow\frac{a+b}{c+d}=1\)(3)
Lại có: \(\frac{a}{b+c+d}=\frac{d}{a+b+c}=\frac{a+d}{a+d+2\left(b+c\right)}=\frac{1}{3}\)
\(\Rightarrow\frac{2\left(c+b\right)+a+d}{a+d}=3\)\(\Rightarrow\frac{2\left(c+b\right)}{a+d}+1=3\)\(\Rightarrow\frac{2\left(b+c\right)}{a+d}=2\)\(\Rightarrow\frac{b+c}{a+d}=1\)(4)
Từ (1) , (2) , (3) , (4)
\(\Rightarrow P=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
B2: a, Vì (x4 + 3)2 ≥ 0
Dấu " = " xảy ra <=> x4 + 3 = 0
<=> x4 = 3
<=> x = 4√3
Vậy GTNN A = 0 khi x = 4√3
b, Vì |0,5 + x| ≥ 0 ; (y - 1,3)4 ≥ 0
=> |0,5 + x| + (y - 1,3)4 ≥ 0
=> |0,5 + x| + (y - 1,3)4 + 20 ≥ 20
Dấu " = " xảy ra <=> \(\hept{\begin{cases}0,5+x=0\\y-1,3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-0,5\\y=1,3\end{cases}}\)
Vậy GTNN V = 20 khi x = -0,5 và y = 1,3
c, Ta có: \(C=\frac{5x-19}{x-4}=\frac{5\left(x-4\right)+1}{x-4}=5+\frac{1}{x-4}\)
C đạt GTNN <=> \(\frac{1}{x-4}\)đạt GTNN <=> x - 4 đạt GTLN
<=> x > 4 , x nguyên dương
Vậy C có GTNN <=> x > 4 , x nguyên dương
(Ko chắc)
( t tham khảo 1 số bài khác thì ng` ta giải x = 3 thì C có GTNN = 4 )
Bài 3:
a, Để N có GTLN <=> 2(x - 2014)2 + 3 có GTNN
Vì (x - 2014)2 ≥ 0 => 2(x - 2014)2 ≥ 0
=> 2(x - 2014)2 + 3 ≥ 3
\(\Rightarrow\frac{1}{2\left(x-2014\right)^2+3}\le\frac{1}{3}\)
Dấu " = " xảy ra <=> x - 2014 = 0
<=> x = 2014
Vậy GTLN N = 1/3 khi x = 2014
b, Ta có: \(P=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để P có GTLN <=> \(\frac{3}{12-x}\)có GTLN <=> 12 - x có GTNN ( (12 - x) ∈ N ; 12 - x ≠ 0)
<=> 12 - x = 1
<=> x = 11
\(\Rightarrow P=2+\frac{3}{12-x}=2+3=5\)
a ) Để A đạt giá trị lớn nhất thì \(x-3\) phải là số nguyên âm lớn nhất
\(\Rightarrow x-3=-1\Leftrightarrow x=2\)
Khi đó : \(A=\frac{1}{2-3}=-1\)
b ) Ta có : \(B=\frac{7-x}{x-5}=\frac{2-\left(x-5\right)}{x-5}=\frac{2}{x-5}-1\)
Để B nhỏ nhất thì \(\frac{2}{x-5}\) cũng phải nhỏ nhất .
\(\Rightarrow x-5\) là số nguyên âm lớn nhất
\(\Rightarrow x-5=-1\Leftrightarrow x=4\Rightarrow B=-3\)
C ) Để C nhỏ nhất thì \(\frac{1}{x-4}\) cũng phải nhỏ nhất .
\(\Rightarrow x-4\) là số nguyên âm lớn nhất
\(\Rightarrow x-4=-1\Leftrightarrow x=3\Rightarrow C=4\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
bài 1 :
a) vì x + 1,5 luôn lớn hơn hoặc bằng 0 mà để x+1,5 đạt giá trị nhỏ nhất => x + 1,5 = 0=> x=-1,5
b) vì x- 2 luôn lớn hơn hoặc bằng 0 mà để x-2 - 9,10 đạt gtri nhỏ nhất => x- 2 = 0=> x=2
Câu 1 : Bài giải
a, \(\text{ }\text{Do }\left|x+1,5\right|\ge0\) Dấu " = " xảy ra khi \(x+1,5=0\text{ }\Rightarrow\text{ }x=-1,5\)
\(\Rightarrow\text{ }Min\text{ }\left|x+1,5\right|=0\text{ khi }x=-1,5\)
b, \(\left|x-2\right|-9,10\) đạt GTNNN khi \(\left|x-2\right|\) đạt GTNN
Mà \(\left|x-2\right|\ge0\)Dấu " = " xảy ra khi \(x-2=0\) \(\Rightarrow\text{ }x=2\)
\(\Rightarrow\text{ }\left|x-2\right|-9,10\ge-9,10\)
\(\text{Vậy }Min\text{ }\left|x-2\right|-9,10=-9,10\text{ khi }x=2\)
Câu 2 : Bài giải
a, Do \(-\left|2x-1\right|\le0\) Dấu " = " xảy ra khi \(-\left|2x-1\right|=0\text{ }\Rightarrow\text{ }2x-1=0\text{ }\Rightarrow\text{ }x=\frac{1}{2}\)
Vậy \(Max\text{ }-\left|2x-1\right|=0\text{ khi }x=\frac{1}{2}\)
b, Do \(4-\left|5x+3\right|\le4\text{ }\)
Dấu " = " xảy ra khi \(4-\left|5x+3\right|=4\text{ }\Rightarrow\text{ }\left|5x+3\right|=0\text{ }\Rightarrow\text{ }5x+3=0\text{ }\Rightarrow\text{ }x=-\frac{3}{5}\)
\(\text{Vậy }Max\text{ }4-\left|5x+3\right|=4\text{ khi }x=-\frac{3}{5}\)
c, \(\frac{1}{8}-\left|x+3\right|\le\frac{1}{8}\) Dấu " = " xảy ra khi \(\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ }\Rightarrow\text{ }\left|x+3\right|=0\text{ }\Rightarrow\text{ }x+3=0\text{ }\Rightarrow\text{ }x=-3\)
\(\text{Vậy }Max\text{ }\frac{1}{8}-\left|x+3\right|=\frac{1}{8}\text{ khi }x=-3\)