\(-\frac{1}{\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. \(Q=-\frac{1}{\sqrt{x}-3}\)

để Q nguyên thì \(\sqrt{x}-3\inƯ\left(1\right)=\left(-1;1\right)\)

\(\sqrt{x}-3=-1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(\sqrt{x}-3=1\Rightarrow\sqrt{x}=4\Rightarrow x=16\)

2. \(Q=\frac{\sqrt{x}-3}{\sqrt{x}-1}=1-\frac{2}{\sqrt{x}-1}\)

Để Q nguyên thì \(\sqrt{x}-1\inƯ\left(2\right)=\left(-2;-1;1;2\right)\)

\(\sqrt{x}-1=-2\Rightarrow\sqrt{x}=-1VN\)

\(\sqrt{x}-1=-1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

\(\sqrt{x}-1=1\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(\sqrt{x}-1=2\Rightarrow\sqrt{x}=3\Rightarrow x=9\)

19 tháng 1

\(\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{5x+9\sqrt{x}-2}\\ =\dfrac{-7\sqrt{x}+7}{5\sqrt{x}-1}+\dfrac{2\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{\left(-7\sqrt{x}+7\right)\left(\sqrt{x}+2\right)}{\left(5\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\dfrac{\left(2\sqrt{x}-2\right)\left(5\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(5\sqrt{x}-1\right)}+\dfrac{39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\)

\(=\dfrac{-7x-14\sqrt{x}+7\sqrt{x}+14+10x-2\sqrt{x}-10\sqrt{x}+2+39\sqrt{x}+12}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}\\ =\dfrac{3x+20\sqrt{x}+28}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}+2\right)\cdot\left(3\sqrt{x}+14\right)}{\left(5\sqrt{x}-1\right)\cdot\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}+14}{5\sqrt{x}-1}\)

19 tháng 1

ĐKXĐ: x ≠ 1/25; x ≥ 0

7 tháng 8 2017

1, Để Q\(\in\)Z thì \(\dfrac{-1}{\sqrt{x}-3}\in Z\) khi đó \(\left[{}\begin{matrix}\sqrt{x}-3=1\\\sqrt{x}-3=-1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=4\end{matrix}\right.\)\(\in Z\)(thỏa mãn)

vậy x\(\in\left\{16,4\right\}\)thì Q\(\in\)Z

2, Để Q\(\in\)Z thì \(\dfrac{\sqrt{x}-2}{3\sqrt{x}-4}\in Z\) khi đó \(\sqrt{x}-2⋮3\sqrt{x}-4\)

<=> 3\(\sqrt{x}\)- 6\(⋮\) 3\(\sqrt{x}\)-4 <=> 3\(\sqrt{x}\)- 4-2 \(⋮\) 3\(\sqrt{x}\)- 4 <=> -2 \(⋮\) 3\(\sqrt{x}\)- 4

=> 3\(\sqrt{x}\)- 4 \(\in\)Ư(-2) Mà Ư(-2) =\(\left\{\pm1,\pm2\right\}\)

+ Với 3\(\sqrt{x}\)- 4 = 1 => 3\(\sqrt{x}\) =5 => \(\sqrt{x}\)= 5/3 =>x =25/9 \(\notin\)Z (loại)

+ Với 3\(\sqrt{x}\)- 4 =-1 => 3\(\sqrt{x}\) =3 => x=1 (thỏa mãn x thuộc Z )

+ Với 3\(\sqrt{x}\)- 4 =2 => 3\(\sqrt{x}\) =6 => \(\sqrt{x}\)=2=>x=4 (thỏa mãn x thuộc Z )

+ Với 3\(\sqrt{x}\)- 4 =-2 => 3\(\sqrt{x}\) =2=> \(\sqrt{x}\)=2/3=>x=4/9(loại vì x ko thuộc Z )

Vậy x \(\in\left\{1,4\right\}\)thì Q đạt giá trị nguyên .

7 tháng 8 2017

câu b, bạn có thể khi tìm ra x rồi thay lại vào Q để thử coi Q có thuộc Z ko vì biểu thức khi xét có nhân thêm 3 nên dẫn đến có chênh lệch số .

11 tháng 10 2020

c, ĐKXĐ: \(x\ge0\)

\(C=\frac{3\sqrt{x}-4}{\sqrt{x}+2}=3-\frac{10}{\sqrt{x}+2}\in Z\)

\(\Leftrightarrow\sqrt{x}+2\in U_{10}=\left\{\pm1;\pm2;\pm5\right\}\)

\(\sqrt{x}+2\ge2\Rightarrow...\)

d, ĐKXĐ: \(x\ge0;x\ne4\)

\(D=\frac{3-2\sqrt{x}}{\sqrt{x}-2}=-2-\frac{1}{\sqrt{x}-2}\in Z\)

\(\Leftrightarrow\sqrt{x}-2\in U_1=\left\{\pm1\right\}\)

\(\sqrt{x}-2\ge-2\Rightarrow...\)

11 tháng 10 2020

a, ĐKXĐ: \(x\ge0\)

\(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=1-\frac{4}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\in U_4=\left\{\pm1;\pm2;\pm4\right\}\)

\(\sqrt{x}+1\ge1\Rightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\Rightarrow x\in\left\{0;1;9\right\}\)

b, ĐKXĐ: \(x\ge0;x\ne9\)

\(B=\frac{2\sqrt{x}-1}{\sqrt{x}-3}=2+\frac{5}{\sqrt{x}-3}\in Z\)

\(\Leftrightarrow\sqrt{x}-3\in U_5=\left\{\pm1;\pm5\right\}\)

\(\sqrt{x}-3\ge-3\Rightarrow\sqrt{x}-3\in\left\{\pm1;5\right\}\Rightarrow x\in\left\{4;16;25\right\}\)

1) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\frac{4}{9}\end{matrix}\right.\)

Ta có: \(Q=\frac{-5\sqrt{x}+4}{3\sqrt{x}-2}+\frac{6\sqrt{x}+4}{2\sqrt{x}+3}+\frac{29\sqrt{x}-28}{3\left(6x+5\sqrt{x}-6\right)}\)

\(=\frac{3\left(-5\sqrt{x}+4\right)\left(2\sqrt{x}+3\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(6\sqrt{x}+4\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{3\left(-10x-7\sqrt{x}+12\right)}{3\left(3\sqrt{x}-2\right)\left(2\sqrt{x}+3\right)}+\frac{3\left(18x-8\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}+\frac{29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{-30x-21\sqrt{x}+36+54x-24+29\sqrt{x}-28}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{24x+8\sqrt{x}-16}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{8\left(3x+3\sqrt{x}-2\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{8\left(\sqrt{x}+1\right)\left(3\sqrt{x}-2\right)}{3\left(2\sqrt{x}+3\right)\left(3\sqrt{x}-2\right)}\)

\(=\frac{8\sqrt{x}+8}{6\sqrt{x}+9}\)

2) Để \(Q>\frac{8}{3}\) thì \(Q-\frac{8}{3}>0\)

\(\Leftrightarrow\frac{8\sqrt{x}+8}{6\sqrt{x}+9}-\frac{8}{3}>0\)

\(\Leftrightarrow\frac{24\sqrt{x}+24}{3\left(6\sqrt{x}+9\right)}-\frac{8\left(6\sqrt{x}+9\right)}{3\left(6\sqrt{x}+9\right)}>0\)

\(\Leftrightarrow\frac{24\sqrt{x}+24-48\sqrt{x}-72}{9\left(2\sqrt{x}+3\right)}>0\)

\(9\left(2\sqrt{x}+3\right)>0\forall x\) thỏa mãn ĐKXĐ

nên \(-24\sqrt{x}-48>0\)

\(\Leftrightarrow-24\left(\sqrt{x}+2\right)>0\)

\(\Leftrightarrow\sqrt{x}+2< 0\)(Vô lý)

Vậy: Không có giá trị nào của x thỏa mãn \(Q>\frac{8}{3}\)

27 tháng 5 2016

\(B=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{3\left(\sqrt{x}-1\right)}{x-5\sqrt{x}+6}\left(ĐKXĐ:x\ne4;x\ne9;x\ge0\right)\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-4-\left(x-2\sqrt{x}-3\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{2-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{1}{3-\sqrt{x}}\)

 \(B< -1\)\(\Leftrightarrow\) \(\frac{1}{3-\sqrt{x}}< -1\)\(\Rightarrow\sqrt{x}-3< 1\Leftrightarrow x< 16\)

Mặt khác : Vì \(B< -1< 0\)nên \(3-\sqrt{x}< 0\Rightarrow x>9\)

Vậy để \(B< -1\)thì \(9< x< 16\)

\(2B\in Z\Leftrightarrow B\in Z\)

\(\Leftrightarrow\frac{1}{3-\sqrt{x}}\in Z\)=> \(3-\sqrt{x}\inƯ\left(1\right)\)

\(\Rightarrow3-\sqrt{x}\in\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{16\right\}\)( Loại x = 4 vì không thoả mãn điều kiện)

27 tháng 5 2016

Xin lỗi vì để bài mình ghi lộn :))

Còn lại thì ổn rồi :))