Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{2x-3}{x-2}=\frac{2x-4+1}{x-2}=\frac{2x-4}{x-2}+\frac{1}{x-2}=\frac{2\left(x-2\right)}{x-2}+\frac{1}{x-2}=2+\frac{1}{x-2}\)
Để A là số nguyên thì \(1⋮\left(x-2\right)\)\(\Rightarrow\)\(\left(x-2\right)\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
Suy ra :
\(x-2\) | \(1\) | \(-1\) |
\(x\) | \(3\) | \(1\) |
Vậy \(x=1\) hoặc \(x=3\) thì A là số nguyên
Chúc bạn học tốt ~
Ta có : \(A=\frac{2x-3}{x-2}\)
\(\Leftrightarrow A=\frac{2x-4+1}{x-2}\)
\(\Leftrightarrow A=\frac{2\left(x-2\right)}{x-2}+\frac{1}{x-2}\)
\(\Leftrightarrow A=2+\frac{1}{x-2}\)
Mà \(A\in Z\)
\(\Leftrightarrow\frac{1}{x-2}\in Z\)
\(\Leftrightarrow1⋮x-2\)
\(\Leftrightarrow x-2\in\left\{-1;1\right\}\)
\(\Leftrightarrow x\in\left\{1;3\right\}\)
Vậy \(A\in Z\Leftrightarrow x\in\left\{1;3\right\}\)
để x nguyên thì 2a - 1 phải là ước của 3
ta có:
2a - 1 = 1 => 2a = 1 + 1 = 2 => a = 2 : 2 = 1
2a - 1 = -1 => 2a = -1 + 1 = 0 => a = 0 : 2 = 0
2a - 1 = 3 => 2a = 3 + 1 = 4 => a = 4 : 2 = 2
2a - 1 = -3 => 2a = -3 + 1 = -2 => a = -2 : 2 = -1
vậy a \(\in\) {-1; 0; 1; 2}
Đễ X là số nguyên
=>\(\Rightarrow\frac{3}{2a-1}\in Z\Rightarrow2a-1\inƯ\left(3\right)=\left\{-1;1;3;-3\right\}\)
=>x={0;1;2;-1}
Ta có: \(\frac{2a+5}{5}-\frac{a}{5}=\frac{2a+5-a}{5}=\frac{a+5}{5}=\frac{a}{5}+1\) => a \(⋮\) 5 => a \(\in\) B(5)
Vậy để \(\frac{2a+5}{5}-\frac{a}{5}\) nguyên thì a \(\in\) B(5)
Đặt \(A=\frac{4X-4}{X-2}\)(ĐKXĐ:\(x\ne2\))
Ta có:\(A=\frac{4X-4}{X-2}=\frac{4\left(x-2\right)+4}{x-2}=4+\frac{4}{x-2}\)
Để A nguyên thì 4 chia hết cho x-2. Hay \(\left(x-2\right)\inƯ\left(4\right)\)
Vậy Ư(4) là:[1,-1,2,-2,4,-4]
Do đó ta có bảng sau:
x-2 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -2 | 0 | 1 | 3 | 4 | 6 |
Vậy để A nguyên thì x=-2;0;1;3;4;6
a)\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\in Z\)
\(\Rightarrow3⋮a+1\)
\(\Rightarrow a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow a\in\left\{0;-2;2;-4\right\}\)
b) Phần 1
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy+2y=0\)
\(\Rightarrow2x-4xy+2y-1=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Lập bảng xét Ư(-1)={1;-1}
Phần 2:
\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)
\(\Leftrightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)
\(\Leftrightarrow\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)
+)XÉt \(x+y+z+t\ne0\) suy ra \(x=y=z=t\), Khi đó \(P=1+1+1+1=4\)
+)Xét \(x+y+z+t=0\) suy ra x+y=-(z+t); y+z=-(t+x); (z+t)=-(x+y); (t+x)=-(y+z)
Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Vậy P có giá trị nguyên
\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)
Bạn tự làm nốt
\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}=\frac{2a+9-5a-17-3a}{a+3}=\frac{-6a-8}{a+3}=\frac{-6a-18+10}{a+3}=\frac{-6\left(a+3\right)+10}{a+3}\)
\(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\) là số nguyên
<=> a + 3 thuộc Ư(10) = {-10 ; -5 ; -2 ; -1 ; 1 ; 2 ; 5 ; 10}
<=> a thuộc {-13 ; -8 ; -5 ; -4 ; -2 ; -1 ; 2 ; 7}
sai đề rùi nhé bạn đán lẽ tìm
a thuộc Z sao cho a-2/2a là
số nguyên
Để \(\frac{a-2}{2a}\)là số nguyên
\(\Rightarrow\left(a-2\right)⋮2a\)
\(\Rightarrow a-2⋮a+a\)
mà \(a⋮a\Rightarrow-2⋮a\)
\(\Rightarrow a\in U\left(-2\right)=\left\{1;-1;2;-2\right\}\)
Vậy \(a\in\left\{1;-1;2;-2\right\}\)