\(\frac{3x+4}{2x+1}\)đạt giá trị nhỏ nhất.
 

Ghi lời giải...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

Đặt A = \(\frac{3x+4}{2x+1}=\frac{2\left(3x+4\right)}{2\left(2x+1\right)}=\frac{6x+8}{2\left(2x+1\right)}=\frac{6x+3+5}{2\left(2x+1\right)}=\frac{3\left(2x+1\right)+5}{2\left(2x+1\right)}=\frac{3}{2}+\frac{5}{2\left(2x+1\right)}\)

*Xét 2x + 1 < 0 => \(\frac{5}{2\left(2x+1\right)}< 0\)=>\(A>\frac{3}{2}\)

*Xét 2x + 1 > 0

Mà 2x + 1 \(\in\)Z (vì x \(\in\)Z) => \(2x+1\ge1\).Ta có: \(\frac{5}{2\left(2x+1\right)}\le\frac{5}{2}\)

\(\Rightarrow A\ge\frac{3}{2}+\frac{5}{2}=\frac{8}{2}=4\)

\(\Leftrightarrow A=4\Leftrightarrow2x+1=1\Leftrightarrow2x=0\Leftrightarrow x=0\)

Vậy GTNN của A = 1 tại x = 0 

1 tháng 5 2017

Sửa câu kết luận: vậy GTNN của A = 4 tại x = 0

6 tháng 5 2016

để phân số đã cho nhỏ nhất khi 2x+1 là số nguyên âm lớn nhất

=> 2x+1 =-1

    2x= -2

x=-1

6 tháng 5 2016

x=-1

10 tháng 3 2016

làm ơn giúp mình với

13 tháng 5 2017

Bài này khá đơn giản 

===============

Để A nguyên thì 5 chia hết cho n+1 => n+1\(\inƯ_{\left(5\right)}\)

Ta có bảng

n+151-1-5
n40-2

-6

Vậy n\(\in\)(4,0,-2,-6) là các giá trị cần tìm

14 tháng 5 2017

mk giải vậy nè

để A đạt giá trị nguyên thì n+1\(\in\)Ư(5)

\(U\left(5\right)=\left[-5;-1;1;5\right]\)

ta có bảng sau:

n+1-5-115
n-6-204

vậy n\(\in\)(-6;-2;0;4) để A nguyên

2 tháng 4 2019

1.

a. Gọi p là một ước chung của 12n + 1 và 30n + 2. Ta có:

12n + 1 chia hết cho d và 30n + 2 chia hết cho d

=> 5 ( 12n + 1 ) - 2 ( 30n + 2 ) chia hết cho d

=> 60n + 5 - 60n + 4 chia hết cho d

=> 1 chia hết cho d. Vậy d =1 hoặc d = -1

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản.

2 tháng 4 2019

Ta có :

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy  \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\) \(< 1\)

26 tháng 5 2018

\(a)\) Ta có : 

\(\left|\frac{1}{2}-x\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(A=0,6+\left|\frac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{1}{2}-x=0\)

\(\Leftrightarrow\)\(x=\frac{1}{2}\)

Vậy GTNN của \(A\) là \(0,6\) khi \(x=\frac{1}{2}\)

Chúc bạn học tốt ~ 

26 tháng 5 2018

\(b)\) Ta có : 

\(\left|2x+\frac{2}{3}\right|\ge0\) ( với mọi x ) 

\(\Rightarrow\)\(-\left|2x+\frac{2}{3}\right|\le0\) ( với mọi x ) 

\(\Rightarrow\)\(B=\frac{2}{3}-\left|2x+\frac{2}{3}\right|\le\frac{2}{3}\) ( cộng hai vế cho \(\frac{2}{3}\) ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(2x+\frac{2}{3}=0\)

\(\Leftrightarrow\)\(2x=\frac{-2}{3}\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}:2\)

\(\Leftrightarrow\)\(x=\frac{-2}{3}.\frac{1}{2}\)

\(\Leftrightarrow\)\(x=\frac{-1}{3}\)

Vậy GTLN của \(B\) là \(\frac{2}{3}\) khi \(x=\frac{-1}{3}\)

Chúc bạn học tốt ~