Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)
không thể cm được đâu bn --> xem lại đề
2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x=1\) vậy \(x=1\)
3) +) tương tự 2)
4) a) +) điều kiện xác định : \(x>0;x\ne4\)
ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)
c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)
tương tự 2 )
\(\)
a) ĐK : x ≥ 0 ; x ≠ 2 ; x ≠ 3
A= \(\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\sqrt{x}-3}{x-5\sqrt{x}+6}\)
=\(\frac{x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\text{}\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}-\frac{3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{x-4-x+3\sqrt{x}-\sqrt{x}+3-3\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
=\(\frac{-1}{\sqrt{x}-3}\)
Vậy...
b)Ta có A<-1
⇒\(\frac{-1}{\sqrt{x}-3}\) <-1
⇒\(\frac{-1}{\sqrt{x}-3}\) +1<0
⇒\(\frac{\sqrt{x}-4}{\sqrt{x}-3}\) <0
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}-4< 0\\\sqrt{x}-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}-4>0\\\sqrt{x}-3< 0\end{matrix}\right.\end{matrix}\right.\)
⇒\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 16\\x>9\end{matrix}\right.\\\left\{{}\begin{matrix}x>16\\x< 9\end{matrix}\right.\end{matrix}\right.\)
⇒9< x <16
Vậy...
c) Ta có A = \(\frac{-1}{\sqrt{x}-3}\)
⇒2A=\(\frac{-2}{\sqrt{x}-3}\)
Để 2A ∈ Z thì \(\frac{-2}{\sqrt{x}-3}\) ∈ Z
⇒\(\sqrt{x}-3\) ∈ Ư(-2) =\(\left\{1;-1;2;-2\right\}\)
Ta có bảng
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 |
x | 16(tm) | 4(tm) | 25(tm) | 1(tm) |
Vậy...
OK!!! đó bạn