Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn:
\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)
\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)
\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)
\(M=\frac{x+1}{3x\left(x-1\right)}\)
Tìm m để
a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)
b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)
a: \(P=\left[\left(x-2\right)\left(x^2+2x+4\right)\cdot\dfrac{x+2}{x^2+2x+4}-\dfrac{\left(x-2\right)\left(x+2\right)}{x^2+2x+4}\cdot\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+2}\right]:\left(x-1\right)\)
\(=\dfrac{\left[x^2-4-\left(x-2\right)^2\right]}{x-1}\)
\(=\dfrac{x^2-4-x^2+4x-4}{x-1}=\dfrac{4x}{x-1}\)
b: Để P là số nguyên thì \(4x-4+4⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{0;3;-1;5;-3\right\}\)
\(A=\frac{2x+3}{2x-3}\)
\(A=\frac{2x-3+6}{2x-3}=1+\frac{6}{2x-3}\)
để \(A\in Z\Rightarrow\frac{6}{2x-3}\in Z\Rightarrow6⋮2x-3\)
\(\Rightarrow2x-3\inƯ\left(6\right)=\left\{\pm1,\pm2,\pm3,\pm6\right\}\)
vì 2x-3 là số lẻ
\(\Rightarrow2x-3=\left\{\pm1,\pm3\right\}\Rightarrow x=\left\{2,1,3,0\right\}\)
a: Sửa đề: \(A=\dfrac{x^3+2x^2+6x+8}{x+1}\)
Để A là số nguyên thì \(x^3+x^2+x^2+x+5x+5+3⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-2;2;-4\right\}\)
b: Để \(\dfrac{2x^2+x-2}{x-3}\) là số nguyên thì \(2x^2-6x+7x-21+19⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{4;2;22;-16\right\}\)
a. \(\frac{\left(2x^2+3x^2\right)\left(2x+1\right)}{4x^3-9x}=\frac{x^2.\left(2x+3\right)\left(2x+1\right)}{x\left(4x^2-9\right)}\)
\(=\frac{x^2\left(2x+3\right)\left(2x+1\right)}{x\left(2x+3\right)\left(2x-3\right)}=\frac{x\left(2x+1\right)}{2x-3}\)
b,Để \(P=0\rightarrow\frac{x\left(2x+1\right)}{2x-3}=0\)
\(\rightarrow x\left(2x+1\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x=0\\2x+1=0\end{matrix}\right.\)
\(\rightarrow\left[{}\begin{matrix}x=0\\x=\frac{-1}{2}\end{matrix}\right.\)