K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

Rút gọn:

\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)

\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)

\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)

\(M=\frac{x+1}{3x\left(x-1\right)}\)

25 tháng 10 2016

help me! 

30 tháng 10 2016

Tìm m để

a, (x^4+5x^3-x^2-17x+m+4)chia hết cho (x^2+2x-3)

b, (2x^4+mx^3-mx-2) chia hết cho (x^2-1)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

a: \(P=\left[\left(x-2\right)\left(x^2+2x+4\right)\cdot\dfrac{x+2}{x^2+2x+4}-\dfrac{\left(x-2\right)\left(x+2\right)}{x^2+2x+4}\cdot\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{x+2}\right]:\left(x-1\right)\)

\(=\dfrac{\left[x^2-4-\left(x-2\right)^2\right]}{x-1}\)

\(=\dfrac{x^2-4-x^2+4x-4}{x-1}=\dfrac{4x}{x-1}\)

b: Để P là số nguyên thì \(4x-4+4⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{0;3;-1;5;-3\right\}\)

17 tháng 11 2018

\(A=\frac{2x+3}{2x-3}\)

\(A=\frac{2x-3+6}{2x-3}=1+\frac{6}{2x-3}\)

để \(A\in Z\Rightarrow\frac{6}{2x-3}\in Z\Rightarrow6⋮2x-3\)

\(\Rightarrow2x-3\inƯ\left(6\right)=\left\{\pm1,\pm2,\pm3,\pm6\right\}\)

vì 2x-3 là số lẻ

\(\Rightarrow2x-3=\left\{\pm1,\pm3\right\}\Rightarrow x=\left\{2,1,3,0\right\}\)

a: Sửa đề: \(A=\dfrac{x^3+2x^2+6x+8}{x+1}\)

Để A là số nguyên thì \(x^3+x^2+x^2+x+5x+5+3⋮x+1\)

\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{0;-2;2;-4\right\}\)

b: Để \(\dfrac{2x^2+x-2}{x-3}\) là số nguyên thì \(2x^2-6x+7x-21+19⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;19;-19\right\}\)

hay \(x\in\left\{4;2;22;-16\right\}\)

10 tháng 1 2020

a. \(\frac{\left(2x^2+3x^2\right)\left(2x+1\right)}{4x^3-9x}=\frac{x^2.\left(2x+3\right)\left(2x+1\right)}{x\left(4x^2-9\right)}\)

\(=\frac{x^2\left(2x+3\right)\left(2x+1\right)}{x\left(2x+3\right)\left(2x-3\right)}=\frac{x\left(2x+1\right)}{2x-3}\)

b,Để \(P=0\rightarrow\frac{x\left(2x+1\right)}{2x-3}=0\)

\(\rightarrow x\left(2x+1\right)=0\)

\(\rightarrow\left[{}\begin{matrix}x=0\\2x+1=0\end{matrix}\right.\)

\(\rightarrow\left[{}\begin{matrix}x=0\\x=\frac{-1}{2}\end{matrix}\right.\)