\(x^3\)+7x2+6x+10 chia hết cho bt B=x2+1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

đơn giản

21 tháng 10 2018

1/ B chia đa thức f(x) cho g(x) như bình thường, dư 3

Để chia hết, số dư phải bằng 0

hay x- 2 thuộc ước của 3 bằng \(\pm1,\pm3\)

Ta có bảng gt:

.....

Vậy..........

16 tháng 7 2017

Bài 1 : Ta có :

x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3

Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :

-x - a = - x + 3

<=> -x + x - a = 3

<=> a = - 3

Vậy GT của a là - 3

16 tháng 7 2017

Bài 2 :

a) \(x^2-2xy-9z^2+y^2\)

= \(\left(x^2-2xy+y^2\right)-9z^2\)

= \(\left(x-y\right)^2-\left(3z\right)^2\)

= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)

Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :

\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000

Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000

b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)

= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)

= ( x- y ) (2)

Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :

\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)

Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = xa) Tìm điều kiện của n để phương trình có ngiệm x>0;b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.2) Rút gọn biểu thức sau:A = (x3 - y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)-...
Đọc tiếp

1) Cho phương trình ẩn x, tham số n \(\varepsilon\)N:

1 + 1/10(x - 1) + 2 + 1/10(x - 2) + 3 + 1/10(x - 3) + ........ + n +1/10(x - n) = x

a) Tìm điều kiện của n để phương trình có ngiệm x>0;

b) Với các giá trị nào của n thì phương trình có nghiệm nguyên, dương. Tìm các nghiệm đó.

2) Rút gọn biểu thức sau:

A = (x- y3){\(\frac{x^2+xy}{x^2+xy+y^2}\)- [\(\frac{x\left(2x^2+xy-y^2\right)}{x^3-y^3}-2+\frac{y}{y-x}\)]:[\(\frac{x-y}{x}-\frac{x}{x-y}\)]}

3) Tìm các số a, b để đa thức P(x) luôn chia hết cho đa thức Q(x) với:

P(x) = 6x- 7x+ ax+ 3x + 2

Q(x) = x- x + b

4) Xác định đa thức bậc ba F(x). Biết F(0) = 8; F(1) = 20; F(2) = 2; F(3) = 2004:

F(x) = ax(x - 1)(x - 2) + bx(x - 1) + cx + d

5) C/m rằng: Hiệu các bình phương của 2 số tự nhiên lẻ bất kì luôn chia hết cho 8

6) Cho biểu thức M = \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)và B = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

a) Chứng minh rằng nếu A = 1 thì B = 0.

b) Ngược lại nếu B =0 thì A = 0 có đúng không? Vì sao?

                                                                              - The End -

 

0
24 tháng 12 2017

\(x^4-x^3+6x^2-x+n\)\(:\)\(x^2-x+5\)\(=x^2+1\)\(n-5\)

Để \(x^4-x^3+6x^2-x+n\) \(⋮\)\(x^2-x+5\) thì \(n-5=0\)hay \(n=5\)

27 tháng 12 2015

không có cách khác 

tick nha

27 tháng 12 2015

ko có cách khác , mk cũg lm tương tự như thế

1 tháng 8 2018

Xét   A =  ........ĐK :  x\(\ne\)-1   (*)

         B=.......    ĐK :   x\(\ne\)-1   ;   x\(\ne\)  3  (**)

a)     Ta có  :   x2-4x+3

                      \(\Leftrightarrow\)x2  -3x-x+3

                     \(\Leftrightarrow\)(x -1) (x-3)

                       .......................

                      \(\Leftrightarrow\)x=1(thỏa mãn đk (*)

                      .,,,,,,,,,,,x=3  (thỏa mãn ĐK(*)

Thay x=..... vào A, ta được:................................

...............................................................................

Vậy tai                             thì A=..... hoặc A =..................

b)    Xét B=................... ĐK.............

   Ta có  x-2x-3

  =  x2--3x+x -3

= (x+1) (x-3)

\(\Rightarrow B=\frac{x+3}{x+1}+\frac{x-7}{\left(x+1\right)\left(x-3\right)}+\frac{1}{x-3}\)

\(\frac{\left(x+3\right)\left(x-3\right)+x-7+x+1}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{x^2-9+2x-6}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{x^2+2x-15}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{\left(x+1\right)^2-16}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{\left(x+1+4\right)\left(x+1-4\right)}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}\)

=\(\frac{x+5}{x+1}\)

Vậy B=.......với x\(\ne\)..............

c)   +) Tìm x để B= 2

Để B=2 thì  \(\frac{x+5}{x+1}\)=2

\(\Leftrightarrow\frac{x+5-2\left(x+1\right)}{x+1}=0\)

\(\Leftrightarrow x+5-2x-2=0\)

........................................................

Vậy để B=2 thì x=...........

TƯƠNG TỰ B=x-1

d)    XÉT B=...........ĐK.....................

  ĐỂ B>2 THÌ ........................

GIẢI RA

g) Xét........................

Ta có \(B=\frac{x+5}{x+1}=1+\frac{4}{x+1}\)

Vì x\(\in\)Z nên   (x+1) \(\in\)Z

Do đó A\(\in\)\(\Leftrightarrow\)\(1+\frac{4}{X+1}\)\(\inℤ\)

                              \(\Leftrightarrow\frac{4}{X+1}\inℤ\)

                                    \(\Leftrightarrow4⋮\left(X+1\right)\)

                                   \(\Leftrightarrow\left(X+1\right)\inƯ\left(4\right)\)

                                     \(\Leftrightarrow\left(X+1\right)\in\hept{\begin{cases}\\\end{cases}\pm1;\pm2;\pm4}\)

Nếu x+1=1\(\Leftrightarrow\)x=0(thỏa mãn ĐK(**); X\(\inℤ\)

.............................................................................................

...............................................................................

Vậy để B nguyên thì x\(\in\hept{\begin{cases}\\\end{cases}}\).......................................................

e) XIN LỖI MÌNH CHỈ BIẾT TÌM GTNN CỦA B VỚI MỌI GIA TRỊ CỦA X