\(\frac{x+p}{2x-3p}\)(VỚI p LÀ SỐ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2015

 

\(M=\frac{x^2-3x+5x-15+2}{x-3}=\frac{x\left(x-3\right)+5\left(x-3\right)+2}{x-3}=\frac{\left(x-3\right)\left(x+5\right)+2}{x-3}=x+5+\frac{2}{x-3}\)

=> M nguyên <=> x+5 nguyên và 2/x-3 nguyên <=> x nguyên và x-3 thuộc Ư(2)

=> x-3 thuộc (+-1; +-2) <=> x thuộc (4;2;5;1)

4 tháng 8 2017

a) ta có: A=\(\frac{21x+3}{7x+1}=\frac{3\left(7x+1\right)}{7x+1}=3\)   với x khác -1/7

Vâỵ vs mọi gt trị của x thuộc Z (x khác -1/7) thì A mang gt nguyên

b)ta có: B=\(\frac{3x+2}{2x+3}\)  => 2B=\(\frac{3\left(2x+3\right)-5}{2x+3}=3-\frac{5}{2x+3}\)

để B có giá trị nguyên <=>2B có gt nguyên <=> \(\frac{5}{2x+3}\) có gt nguyên<=> 2x+3 là các ước nguyên của 5

Ư(5)={-5 ; -1 ; 1 ; 5}

ta có bảng:

2x+3-5-115
x-4-2-11

Vậy với x={-4 ; -2 ; -1 ; 1} thì B nguyên

14 tháng 8 2016
  • Để B có giá trị nguyên thì 2x-5 chia het 3x-9

                                               =>  6x-15 chia hết 3x-9

                                               =>  6x-18+18-15 chia hết 3x-9

                                               =>  2.[3x-9]+3 chia hết 3x-9

                                               =>  3 chia hết cho 3x-9

                                               =>  \(3x-9\inƯ\left[3\right]=\left\{-1;1;3;-3\right\}\) 

                                               =>   \(x\in\left\{4;2\right\}\)

14 tháng 8 2016
  • Để A có giá trị nguyên thì 3x-4 chia het 2+x

                                                   => 3x-4 chia hết x+2

                                                   => 3x+6-6-4 chia hết x+2

                                                   => 3.[x+2] -6-2 chia hết x+2

                                                   => -8 chia hết x+2

                                                    => \(x+2\inƯ\left[-8\right]=\left\{-1;1;2;-2;4;-4;-8;8\right\}\)

                                                    =>  \(x\in\left\{-3;-1;0;-4;2;-6;-10;6\right\}\)

Để A là số nguyên thì \(x^2\left(x-2\right)+x-2+4⋮x-2\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{3;1;4;0;6;-2\right\}\)

7 tháng 12 2016

\(\frac{x^3-2x^2+x+2}{x-2}=\frac{x^2\left(x-2\right)+\left(x-2\right)+4}{x-2}=\frac{\left(x-2\right)\left(x^2+1\right)+4}{x-2}\)

\(=\frac{\left(x-2\right)\left(x^2+1\right)}{x-2}+\frac{4}{x-2}=x^2+1+\frac{4}{x-2}\)

\(x^2+1+\frac{4}{x-2}\) nguyên khi và chỉ khi 4 chia hết cho x-2

<=>\(x-2\inƯ\left(4\right)=\left\{-4;-1;1;4\right\}\)

<=>\(x\in\left\{-2;1;3;6\right\}\)

Vậy ..................