\(\frac{2x^2+10x-11}{x+5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

Ta có: \(\frac{2x^2+10x-11}{x+5}=\frac{2x\left(x+5\right)-11}{x+5}=2x-\frac{11}{x+5}\)

Để \(\frac{2x^2+10x-11}{x+5}\in Z\)<=> \(11⋮x+5\) 

                                           <=> \(x+5\)\(\in\)Ư(11) = {1; -1; 11; -11}

Lập bảng :

x + 5 1 -1 11 -11
   x  4 -6  6  -16

Vậy ...

\(\text{Ta có :}\)

\(\frac{2x^2+10x-11}{x+5}=\frac{2x\left(x+5\right)-11}{x+5}\)

                            \(=2x-\frac{11}{x+5}\)

\(\text{Để biểu thức có giá trị nguyên thì }\frac{11}{x+5}\text{cũng phải nguyên (vì 2x chắc chắn là nguyên)}\)

\(\Rightarrow11⋮x+5\Rightarrow x+5\inƯ_{\left(11\right)}=\left\{\pm1;\pm11\right\}\)

\(\Rightarrow x\in\left\{-16;-6;-4;6\right\}\)

27 tháng 6 2019

a) Để biểu thức nguyên 

\(\Leftrightarrow2x+3⋮x-1\)

\(\Leftrightarrow2.\left(x-1\right)+5⋮x-1\)

Mà \(2.\left(x-1\right)⋮x-1\)

\(\Rightarrow5⋮x-1\)

Tự tìm x

27 tháng 6 2019

cảm ơn bạn

15 tháng 7 2017

Ta có : \(\frac{10x+6}{x+2}=\frac{10x+20-14}{x+2}=\frac{10\left(x+2\right)}{x+2}-\frac{14}{x+2}=10-\frac{14}{x+2}\)

Để phân số nguyên thì : 14 chia hết cho x + 2

=> x + 2 thuộc Ư(14) 

cứ thế lập banngr là ra

15 tháng 7 2017

Để \(\frac{5}{x+2}\) nguyên thì 5 chia hết cho x + 2

=> x + 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x + 2-5 -115
x-7-3-13
19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

22 tháng 3 2018

a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)

\(\Rightarrow10x+20-7⋮2x+4\)

\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)

\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)

      \(5\left(2x+4\right)⋮2x+4\)

\(\Rightarrow7⋮2x-4\)

tới đây bn liệt kê Ư(7) rồi làm tiếp.

b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)

để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất

=> 2x+4 là số nguyên dương nhỏ nhất

+ xét 2x+4 = 1

=> 2x = -3

=> x = -1,5 loại vì x thuộc Z

+ xét 2x+4=2

=> 2x = -2

=> x = -1 (tm)

vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)

5 tháng 6 2016

a) x \(\in\)B3-2

b)\(\left(x-1\right)\in U_{\left(5\right)}=\left\{-5,-1,1,5\right\}\)=> x\(\in\left\{-4,0,2,6\right\}\)

c) \(=1-\frac{3}{x-4}nguyen\Leftrightarrow\left(x-4\right)\in U_3=\left\{-3,-1,1,3\right\}\)

=>x\(\in\left\{1,3,5,7\right\}\)

5 tháng 6 2016

a)Để A nguyên thì x+2 chia hết cho 3 => x+2 thuộc B(3)={0;3;6;9;...} => x{-2;1;4;7;...}

b) Để B nguyên thì x-1 thuộc Ư(5)={1;-1;5;-5}

Th1 x-1=1 => x=2 

Th2 x-1=-1 => x =0

Th3 x-1=5 => x=6

Th4 x-1=-5 => x= -4

Vậy x thuộc {2;0;6;-4}

c)

\(C=\frac{x-7}{x-4}=\frac{x-4-3}{x-4}=\frac{x-4}{x-4}-\)\(\frac{3}{x-4}\)\(=1-\frac{3}{x-4}\)

Vì 1 thuộc Z nên để C thuộc Z thì 3/x-4 thuộc Z

=> x-4 thuộc Ước của 3={1;-1;3;-3}

Th1 x-4=1 => x=5

Th2 x-4=-1 => x=3

Th3 x-4=3 => x=7

Th4 x-4=-3 => x=1

Vậy x thuộc {5;3;7;1}

16 tháng 7 2016

a)Để A là số nguyên thì x-2 chia hết cho x+1

         Do đó ta có:

\(A=\frac{x-2}{x+1}=\frac{x+1+-3}{x+1}=1+\frac{-3}{x+1}\)

             \(\Rightarrow x+1\inƯ\left(-3\right)\)

Vậy Ư(-3)là:[1,-1,3,-3]

                   Ta có bảng sau:

x+1-3-113
x-4-202

         Vậy x=-4;-2;0;2

b)Để B là số nguyên thì x+4 chia hết cho x-1

          Do đó ta có:

\(A=\frac{x+4}{x-1}=\frac{x-1+5}{x-1}=1+\frac{5}{x-1}\)

        \(\Rightarrow x-1\inƯ\left(5\right)\)

Vậy Ư(5)là:[1,-1,5,-5]

           Ta có bảng sau:

x-1-5-115
x-4026

Vậy x=-4;0;2;6

16 tháng 7 2016

c) Để \(\frac{2x+7}{x+2}\) là số nguyên

\(\Leftrightarrow2x+7⋮x+2\)

\(\Rightarrow\left(2x+4\right)+3⋮x+2\)

\(\Rightarrow2\left(x+2\right)+3⋮x+2\)

\(\Rightarrow\begin{cases}2\left(x+2\right)⋮x+2\\3⋮x+2\end{cases}\)

\(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng sau :

x+2-3-113
x-5-3-11

Vậy \(x\in\left\{-3;-1;1;3\right\}\)

d) Để \(\frac{2x+9}{x+1}\) là số nguyên 

\(\Leftrightarrow2x+9⋮x+1\)

\(\Rightarrow\left(2x+2\right)+7⋮x+1\)

\(\Rightarrow2\left(x+1\right)+7⋮x+1\)

\(\Rightarrow\begin{cases}2\left(x+1\right)⋮x+1\\7⋮x+1\end{cases}\)

\(\Rightarrow x+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng sau :

x+1-7-117
x-8-206

Vậy \(x\in\left\{-8;-2;0;6\right\}\)

6 tháng 7 2016

=> (2*x^3+2*x+1)/x

=> 2*x^3/(x+2)+4*x^2/(x+2)+1/(x+2)

=> 2*(x^2+1)

3 tháng 5 2017

a) Ta có \(\frac{x-3}{x-2}=\frac{\left(x-2\right)-1}{x-2}=1-\frac{1}{x-2}\)

Để \(1-\frac{1}{x-2}\in Z\Rightarrow x-2\inƯ\left(1\right)\Rightarrow x-2\)thuộc 1;-1

+) Với x-2=1 thì \(x=3\)

+) Với x-2=-1 thì \(x=1\)