K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

\(A=\frac{2x+3}{2x-3}\)

\(A=\frac{2x-3+6}{2x-3}=1+\frac{6}{2x-3}\)

để \(A\in Z\Rightarrow\frac{6}{2x-3}\in Z\Rightarrow6⋮2x-3\)

\(\Rightarrow2x-3\inƯ\left(6\right)=\left\{\pm1,\pm2,\pm3,\pm6\right\}\)

vì 2x-3 là số lẻ

\(\Rightarrow2x-3=\left\{\pm1,\pm3\right\}\Rightarrow x=\left\{2,1,3,0\right\}\)

1 tháng 7 2021

\(\left(x+4\right)^2-81=0\Leftrightarrow\left(x+4\right)^2-9^2=0\)

\(\Leftrightarrow\left(x+4+9\right)\times\left(x+4-9\right)=0\)

\(\Leftrightarrow\left(x+13\right)\times\left(x-5\right)=0\)

\(\left[{}\begin{matrix}x+13=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-13\\x=5\end{matrix}\right.\)

23 tháng 6 2017

a) Điều kiện : \(x\ne2;x\ne3\)

 \(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

23 tháng 6 2017

b) Điều kiện \(x\in Z;x\ne2;x\ne3\)

Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên

\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)

mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)

22 tháng 7 2020

vào thống kê xem link nhé: 

Câu hỏi của Kim Trân Ni - Toán lớp 8 - Học toán với OnlineMath

12 tháng 12 2018

a, ĐKXĐ: \(x\ne\pm3\)

\(A=\frac{x\left(x-3\right)+2x\left(x+3\right)-3x^2-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)

\(=\frac{3x-12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}=\frac{3x-12}{3x+9}\)

b, \(x=-4\Rightarrow A=\frac{3.\left(-4\right)-12}{3.\left(-4\right)+9}=8\)

c, \(A\in Z\Rightarrow3x-12⋮\left(3x+9\right)\Rightarrow3x+9-21⋮\left(3x+9\right)\Rightarrow21⋮\left(3x+9\right)\)

\(\Rightarrow3x+9\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Mà \(3x+9⋮3\Rightarrow3x+9\in\left\{-21;-3;3;21\right\}\Rightarrow x\in\left\{-10;-4;-2;4\right\}\) (thỏa mãn điều kiện)

12 tháng 12 2018

a, ĐỂ A xác định : 

\(\Rightarrow\hept{\begin{cases}x+3\ne0\\x-3\ne0\\x^2-9\ne0\end{cases}}\Rightarrow x\ne\pm3.\)

\(A=\left(\frac{x}{x+3}+\frac{2x}{x-3}-\frac{3x^2+12}{\left(x+3\right)\left(x-3\right)}\right):\frac{3}{x-3}\)

\(A=\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^2+12}{\left(x-3\right)\left(x+3\right)}:\frac{3}{x-3}\)

\(A=\frac{x^2-3x+2x^2+6x-3x^2+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)

\(A=\frac{3x+12}{\left(x-3\right)\left(x+3\right)}.\frac{x-3}{3}\)

\(A=\frac{x-4}{x+3}\)

b

13 tháng 12 2021

Answer:

a, \(\left|x-3\right|=1\)

\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

Trường hợp 1: Ta thay \(x=4\) vào \(A\)

\(A=\frac{2.4-7}{4-1}=\frac{1}{3}\)

Trường hợp 2: Ta thay \(x=2\) vào \(A\)

\(A=\frac{2.2-7}{2-1}=\frac{-3}{1}=-3\)

b, Để cho \(A\inℤ\)

\(\Rightarrow\frac{2x-7}{x-2}\inℤ\)

\(\Rightarrow2-\frac{5}{x-1}\inℤ\)

\(\Rightarrow5⋮x-1\)

\(\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x\in\left\{2;0;6;-4\right\}\)

c, Để \(A=\frac{2}{3}\)

\(\Rightarrow\frac{2x-7}{x-1}=\frac{2}{3}\)

\(\Rightarrow2-\frac{5}{x-1}=\frac{2}{3}\)

\(\Rightarrow\frac{5}{x-1}=\frac{4}{3}\)

\(\Rightarrow x-1=\frac{15}{4}\)

\(\Rightarrow x=\frac{19}{4}\)