\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) có giá trị nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

A=\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\)=\(\frac{2\sqrt{x}-2+5}{\sqrt{x}-2}\)=2+\(\frac{5}{\sqrt{x}-2}\)

Để A thuộc Z => \(\frac{5}{\sqrt{x}-2}\)thuộc Z => \(\sqrt{x}\)-2 thuộc Ư(5)={-5 ; 5; 1 ;-1 }

Ta có bảng sau:
\(\sqrt{x}\)-2-5-115
\(\sqrt{x}\)-3137
x91949

KL: Với x thuộc {1; 9 ;49 } thì A thuộc Z

k cho mk nha :)

31 tháng 1 2017

\(\frac{2\sqrt{x}+3}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+7}{\sqrt{x}-2}=\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)

Để \(2+\frac{7}{\sqrt{x}-2}\) là số nguyên <=> \(\frac{7}{\sqrt{x}-2}\) là số nguyên

=> \(\sqrt{x}-2\) thuộc ước của 7 là - 7 ; - 1; 1 ; 7

=> \(\sqrt{x}\) = { - 5; 1 ; 3 ; 9 }

=> x = { 1 ; 3 }

31 tháng 1 2017

Online Math ác quá!!!!!!!!!!

Điểm hỏi đáp là 678 

Giờ còn -978

huhuhuhuhuuhuhuhuh

Trừ 1300 điểm

Đề nghị Online Math coi lại cách trừ điểm 

29 tháng 1 2017

\(P=\frac{2\sqrt{x}+3}{\sqrt{x}-2}=\frac{2\sqrt{x}-4+7}{\sqrt{x}-2}=\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)

=> \(\sqrt{x}-2\inƯ\left(7\right)\)= {- 7; - 1 ; 1 ; 7 }

\(\Rightarrow\sqrt{x}=\) { - 5; 1; 3 ; 9 }

\(\Rightarrow x=\) { 1 ; 3 }

19 tháng 10 2016

Để A nguyên thì \(\sqrt{x}-3⋮2\)

Do x < 30 nên \(\sqrt{x}< 6\) => \(\sqrt{x}-3< 3\)

Lại có: \(\sqrt{x}-3\ge-3\) do \(\sqrt{x}\ge0\)

=> \(\sqrt{x}-3\in\left\{2;0;-2\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{5;3;1\right\}\)

\(\Rightarrow x\in\left\{25;9;1\right\}\)

Vậy ...

12 tháng 8 2018

Để A thuộc Z

=> A^2 thuộc Z

=> x-3+4/x-3 = 1+4/x-3 thuộc z

=> x-3 thuộc ước của 4 Giải ra

1 tháng 10 2019

Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)

Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5

 Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)

Vậy B đạt giá  trị lớn nhất là 3/19 khi và chỉ khi x = 5

C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2

Suy ra x là số chính phương lẻ

 Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}