Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\) \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow3x-\frac{1}{2}=0\) \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)
\(3x=\frac{1}{2}\) \(\frac{1}{2}y=\frac{-3}{5}\)
\(x=\frac{1}{2}:3\) \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)
\(x=\frac{1}{6}\) \(y=\frac{-6}{5}\)
KL: x = 1/6; y = -6/5
b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
rùi bn lm tương tự như phần a nhé!
Bài 1 : \(a,\left|x-3,5\right|=7,5\)
\(\Rightarrow\orbr{\begin{cases}x-3,5=7,5\\x-3,5=-7,5\end{cases}}\Rightarrow\orbr{\begin{cases}x=11\\x=-4\end{cases}}\)
\(b,\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)
\(c,3,6-\left|x-0,4\right|=0\)
\(\Rightarrow\left|x-0,4\right|=3,6\)
\(\Rightarrow\orbr{\begin{cases}x-0,4=3,6\\x-0,4=-3,6\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-3,2\end{cases}}\)
\(d,\left|x-\frac{1}{2}\right|-\frac{1}{3}=1\)
\(\Rightarrow\left|x-\frac{1}{2}\right|=\frac{4}{3}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{4}{3}\\x-\frac{1}{2}=-\frac{4}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{6}\\x=-\frac{5}{6}\end{cases}}\)
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}=\frac{2.15}{5.11}=\frac{6}{11}\)
Vậy x = 6/11
a) \(\frac{1}{3}.x+\frac{2}{5}.\left(x-1\right)=0\)
\(\frac{1}{3}.x+\frac{2}{5}.x-\frac{2}{5}=0\)
\(x.\left(\frac{1}{3}+\frac{2}{5}\right)-\frac{2}{5}=0\)
\(x.\frac{11}{15}-\frac{2}{5}=0\)
\(x.\frac{11}{15}=\frac{2}{5}\)
\(x=\frac{2}{5}:\frac{11}{15}\)
\(x=\frac{6}{11}\)
b) \(3.\left(x-\frac{1}{2}\right)-5.\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(3x-5x-\left(\frac{3}{2}+3\right)=x+\frac{1}{5}\)
\(-2x-\frac{9}{2}=x+\frac{1}{5}\)
\(\Rightarrow-2x-x=\frac{1}{5}+\frac{9}{2}\)
\(-3x=\frac{47}{10}\)
\(x=\frac{47}{10}:\left(-3\right)\)
\(x=\frac{-47}{30}\)
a) Ta có: 8 chia hết cho (n+2)
=> \(n+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
=> \(n\in\left\{-10;-6;-4;-3;-1;0;2;6\right\}\)
b) Ta có: \(5=1.5=\left(-1\right).\left(-5\right)\)
Từ đó bạn lập bảng xét các TH là ra thôi nhé:)
c) \(12=1.12=2.6=3.4=\left(-1\right).\left(-12\right)=\left(-2\right).\left(-6\right)=\left(-3\right).\left(-4\right)\)
Cũng tương tự b bạn lập bảng xét các TH ra nhưng ở đây, vì 2y-1 lẻ với mọi y
=> x chẵn và 2y-1 lẻ thuận tiện cho việc xét hơn