Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(A=x\left(x^3-1\right)-x^2\left(x^2+1\right)-5\left(x-1\right)\)
\(A=x^4-x-x^4-x^2-5x+5\)
\(A=-x^2-6x+5\)
Vậy \(A=-x^2-6x+5\)
\(B=4x\left(x+2\right)-8\left(x+4\right)-4\)
\(B=4x^2+8x-8x-32-4\)
\(B=4x^2-36\)
Vậy \(B=4x^2-36\)
\(b)\) Ta có :
\(A=-x^2-6x+5\)
\(-A=x^2+6x-5\)
\(-A=\left(x^2+6x+9\right)-14\)
\(-A=\left(x+3\right)^2-14\ge-14\)
\(A=-\left(x+3\right)^2+14\le14\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy GTLN của \(A\) là \(14\) khi \(x=-3\)
Chúc bạn học tốt ~
a) Có \(P\left(1\right)=2.1^2+2m.1+m^2=2+2m+m^2\)
\(Q\left(1\right)=\left(-1\right)^2+4\left(-1\right)+5=1-4+5=2\). Vì \(P\left(1\right)=Q\left(-1\right)\)
\(\Rightarrow2+2m+m^2=2\Leftrightarrow2m+m^2=2-2=0\Leftrightarrow m\left(2+m\right)=0\)
\(\Rightarrow m=0\) hoặc \(2+m=0\Leftrightarrow m=0-2=-2\)
b) Đặt \(Q\left(x\right)=x^2+4x+5=0\Leftrightarrow x^2+4x=0-5=-5\)
\(\Leftrightarrow x\left(x+4\right)=-5\). Từ đó bạn lập bảng ra sẽ thấy k có trường hợp thỏa mãn => Vô nghiệm
\(A=x^2+4x^4\)
\(\Rightarrow A=\left(2x^2\right)^2+4x^3+\left(x\right)^2-4x^3\)
\(\Rightarrow\left(2x^2+x\right)^2-4x^3\)
=> Ko là số chính phương
\(B=y^2-12y+36\)
\(B=y^2-2.6y+6^2\)
\(\Rightarrow B=\left(y-6\right)^2\)
=> Là số chính phương
a, M=3+32+...+32016=3(1+3+...+32015) chia hết cho 3 (1)
CÓ: M=3+32+...+32016=3+32(1+...+32014)=3+9(1+...+32014)
Vì 9(1+...+32014) chia hết cho 9, 3 không chia hết cho 9
=>M=3+9(1+...+32014) không chia hết cho 9 (2)
Từ (1) và (2) => M không phải là số chính phương
b, M=3+32+...+32016
=(3+32+33+34)+....+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40
=40(3+...+32013) chia hết cho 40
=>M có chữ số tận cùng là 0
=>M không phải là số nguyên tố
c, Vì M chia hết cho 3 => 6M chia hết cho 3
Mà 9 chia hết cho 3 => 6M+9 chia hết cho 3 (3)
Ta có: M=3(1+3+...+32015)
=>6M=9.2(1+3+...+32015)
=> 6M chia hết cho 9
Mà 9 chia hết cho 9
=> 6M+9 chia hết cho 9 (4)
Từ (3) và (4) => 6M+9 là số chính phương
d, Ta có: M=3+32+...+32016
=>3M=32+33+...+32017
=>3M-M=(32+33+...+32017)-(3+32+...+32016)
=>2M=32017-3
=>6M+9=3(32017-3)+9=3(32017-3+3)=3.32017=32018=3x+5
=>x+5=2018
=>x=2013
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath