Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{x^5}{120}+\frac{x^4}{12}+\frac{7x^3}{24}+\frac{5x^2}{12}+\frac{x}{5}\)
\(=\frac{x^5+10x^4+35x^3+50x^2+24x}{120}\)
\(=\frac{x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}{120}\)
vì\(x;x+1;x+2;x+3;x+4\)là 5 STN liên tiếp nên sẽ có một số chia hết cho5
\(x;x+1;x+2;x+3;x+4\)là 5 STN liên tiếp nên sẽ có 1 số chia hết cho 5
\(x;x+1;x+2;x+3;x+4\)là 5 STN liên tiếp nên có ít nhất 2 số chia hết cho2
\(\Rightarrow x\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)⋮120\)
Mà \(x\in N\Rightarrow\)\(\frac{x^5}{120}+\frac{x^4}{12}+\frac{7x^3}{24}+\frac{5x^2}{12}+\frac{x}{5}\)là STN với mọi \(x\in N\)
a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)
\(=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{1}{x^2+x+1}\)
b) \(\dfrac{9}{x^3-9x}-\dfrac{-1}{x+3}\)
\(=\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\)
c) \(\dfrac{x^3-8}{5x+10}.\dfrac{x^2+4x}{x^2+2x+4}\)
\(=\dfrac{x\left(x-2\right)\left(x^2+2x+4\right)\left(x+4\right)}{5\left(x+2\right)\left(x^2+2x+4\right)}\)
\(=\dfrac{x\left(x-2\right)\left(x+4\right)}{5\left(x+2\right)}\)
d) \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}.\dfrac{2\left(2-x\right)}{x+2}\)
\(=-\dfrac{10\left(x+2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}\)
\(=-\dfrac{5}{2}\)
e) \(\dfrac{\left(x-13\right)^2}{2x^5}.\dfrac{-3x^2}{x-13}\)
\(=\dfrac{x-13}{2x^3}.\dfrac{-3}{1}\)
\(=\dfrac{-3\left(x-13\right)}{2x^3}\)
g) \(\dfrac{x^2+6x+9}{1-x}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2}{x-1}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)
\(=-\dfrac{\left(x+3\right)^2\left(x-1\right)^2}{2\left(x-1\right)\left(x+3\right)^2}\)
\(=-\dfrac{x-1}{2}\).
= 2x - 8 + 4x + 13 = 4x + 2x + 5
= 0