Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5x( x - 1 ) = x - 1
<=> 5x2 - 5x = x - 1
<=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0
<=> 5x2 - 5x - x + 1 = 0
<=> 5x( x - 1 ) - 1( x - 1 ) = 0
<=> ( x - 1 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
b) 2( x + 5 ) - x2 - 5x = 0
<=> 2x + 10 - x2 - 5x = 0
<=> -x2 - 3x + 10 = 0
<=> -x2 - 5x + 2x + 10 = 0
<=> -x( x + 5 ) + 2( x + 5 ) = 0
<=> ( x + 5 )( 2 - x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
c) x2 - 2x - 3 = 0
<=> x2 + x - 3x - 3 = 0
<=> x( x + 1 ) - 3( x + 1 ) = 0
<=> ( x + 1 )( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
d) 2x2 + 5x - 3 = 0
<=> 2x2 - x + 6x - 3 = 0
,<=> x( 2x - 1 ) + 3( 2x - 1 ) = 0
<=> ( 2x - 1 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
a) 5x ( x - 1 ) = x - 1 <=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0 <=> 5x2 - x - ( 5x - 1 ) = 0
<=> x ( 5x - 1 ) - ( 5x - 1 ) = 0 <=> ( x - 1 )( 5x - 1 ) = 0
<=> x = 1 hoặc x = 1/5
b) 2 ( x + 5 ) - x2 - 5x = 0 <=> 2 ( x + 5 ) - x ( x + 5 ) = 0
<=> ( 2 - x ) ( x + 5 ) = 0 <=> x = 2 hoặc x = -5
c) x2 - 2x - 3 = 0 <=> x2 + x - 3x - 3 = 0
<=> x ( x + 1 ) - 3 ( x + 1 ) = 0 <=> ( x - 3 ) ( x + 1 ) = 0
<=> x = 3 hoặc x = -1
d) 2x2 + 5x - 3 = 0
Ta có : delta = 52 - 4.2.3 = 25 - 24 = 1
Khi đó : x = -1 hoặc x = 3/2
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
a, \(2\left(x+5\right)-x^2-5x=0\)
\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
a) \(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x-3=0\\x+1=0\end{array}\right.\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=3\\x=-1\end{array}\right.\)
a.
\(x^2-2x-3=0\)
\(x^2-2\times x+1^2-1^2-3=0\)
\(\left(x-1\right)^2-4=0\)
\(\left(x-1\right)^2=4\)
\(\left(x-1\right)^2=\left(\pm2\right)^2\)
\(x-1=\pm2\)
TH1:
x - 1 = 2
x = 2 + 1
x = 3
TH2:
x - 1 = -2
x = -2 + 1
x = -1
Vậy x = 3 hoặc x = -1
b.
\(2x^2+5x-3=0\)
\(2\times\left(x^2+2\times x\times\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2-\frac{3}{2}\right)=0\)
\(\left(x+\frac{5}{4}\right)^2-\frac{49}{16}=0\)
\(\left(x+\frac{5}{4}\right)^2=\frac{49}{16}\)
\(\left(x+\frac{5}{4}\right)^2=\left(\pm\frac{7}{4}\right)^2\)
\(x+\frac{5}{4}=\pm\frac{7}{4}\)
TH1:
x + 5/4 = 7/4
x = 7/4 - 5/4
x = 2/4
x = 1/2
TH2:
x + 5/4 = -7/4
x = -7/4 - 5/4
x = -12/4
x = -3
Vậy x = -3 hoặc x = 1/2
Chúc bạn học tốt ^^
a) ( 3x - 1 ) ( 2x + 7 ) - ( x + 1 ) ( 6x + 5 ) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 - 5x + 6x - 5) = 16
<=> 6x2 + 21x - 2x - 7 - ( 6x2 + x - 5 ) = 16
<=> 6x2+ 21x - 2x - 7 - 6x2 -x + 5 = 16
<=> 18x - 2 = 16
<=> 18x = 18
=> x = 1
Vậy....
b)
\(2x\cdot\left(2x-3\right)=\left(3-2x\right)\cdot\left(2-5x\right)\\ \Leftrightarrow-2x\cdot\left(3-2x\right)-\left(3-2x\right)\cdot\left(2-5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(-2x-2+5x\right)=0\\ \Leftrightarrow\left(3-2x\right)\cdot\left(3x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3-2x=0\\3x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
c)
\(2x^3+6x^2=x^2+3x\\ \Leftrightarrow2x^3+6x^2-x^2-3x=0\\ \Leftrightarrow x\cdot\left(2x^2+6x-x-3\right)=0\\ \Leftrightarrow x\cdot\left(-3+6x-x+2x^2\right)=0\\ \Leftrightarrow x\cdot\left[-3\cdot\left(1-2x\right)-x\cdot\left(1-2x\right)\right]=0\\ \Leftrightarrow x\cdot\left(-3-x\right)\cdot\left(1-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\-3-x=0\\1-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
d)
\(x^2-5x+6=0\\ \Leftrightarrow x^2-3x-2x+6=0\\ \Leftrightarrow6-2x-3x+x^2=0\\ \Leftrightarrow2\cdot\left(3-x\right)-x\cdot\left(3-x\right)=0\\ \Leftrightarrow\left(2-x\right)\cdot\left(3-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\3-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
e)
\(\left(2x+5\right)^2=\left(x+2\right)^2\\ \Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+5+x+2\right)\cdot\left(2x+5-x-2\right)=0\\ \Leftrightarrow\left(3x+7\right)\cdot\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+7=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{7}{3}\\x=-3\end{matrix}\right.\)
a) \(\left(x+3\right)\left(x+5\right)+\left(x+3\right)\left(3x-4\right)=0\)
➜\(\left(x+3\right)\left(x+5+1+3x-4\right)=0\)
➜\(\left[{}\begin{matrix}x+3=0\\x+3x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Mk đang hok zoom sorry nha!!!
a)x2-20-x=0
<=>(x2-5x)+(4x-20)=0
<=>x(x-5)+4(x-5)=0
<=>(x-5)(x+4)=0
<=>x-5=0 hoặc x+4=0
<=>x=5 hoặc x=-4
b)(2x+3)2-(4x2-9)=0
<=>(2x+3)(2x+3)-(2x-3)(2x+3)=0
<=>(2x+3)(2x+3-2x+3)=0
<=>(2x+3).6=0
<=>2x+3=0
<=>2x=-3
<=>x=-1,5
c)(2x2+5x+3):(x+1)=4x-5
<=>2x2+5x+3=(4x-5)(x+1)
<=>2x2+5x+3=4x2-x-5
<=>4x2-x-5-2x2-5x-3=0
<=>2x2-6x-8=0
<=>x2-3x-4=0
<=>(x2-4x)+(x-4)=0
<=>x(x-4)+(x-4)=0
<=>(x-4)(x+1)=0
<=>x+1=0 hoặc x-4=0
<=>x=-1 hoặc x=4
Ko viết lại đề
Câu 1: chia ra làm 3 trường hợp
Câu 2:
\(\left(x+2-x+2\right)\left(x+2\right)=0\)
\(4\left(x+2\right)=0\)
\(\Rightarrow x+2=0\)
\(x=-2\)
a) ( x +2 )2 - ( 3x - 1 ) ( x +2 ) = 0
<=> (x+2)(x+2-3x+1) = 0
<=> (x+2)(-2x+3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\-2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=\frac{3}{2}\end{cases}}}\)
b) ( 2x - 1 )2 - ( 2x + 5 ) ( 2x - 5 ) = 18
<=> 4x2 -4x +1 - (4x2-25) =18
<=> 4x2 -4x +1 - 4x2 + 25 = 18
<=> - 4x + 26 = 18
<=> - 4x = 18 - 26
<=> - 4x = -8
<=> x = 2
c) ( 2x + 3 )2 - ( x - 5 )2 = 0
<=> [( 2x + 3 ) - ( x - 5 )].[( 2x + 3 ) + ( x - 5 )] = 0
<=> (2x +3 -x +5) . (2x +3 + x - 5) = 0
<=> (x +8)(3x-2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+8=0\\3x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-8\\x=\frac{2}{3}\end{cases}}}\)
d) 5x3 + 3x - 8 = 0
<=> (5x3 -5x) +(8x-8) = 0
<=> 5x(x2 - 1) + 8(x-1) = 0
<=> 5x(x - 1)(x+1) + 8(x-1) = 0
<=> (x - 1)[5x(x+1) + 8] = 0
<=> (x-1)(5x2+5x +8 ) = 0
<=> (x-1).5.(x2+x+8/5) = 0
<=> 5.(x-1)(x2+x+1/4 + 27/20) = 0
\(\Leftrightarrow\left(x-1\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{27}{20}\right]\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{20}=0\end{cases}\Leftrightarrow x=1}\)vỉ \(\left(x+\frac{1}{2}\right)^2+\frac{27}{20}>0\)với mọi x
Vậy x = 1
a. x2 - 2x - 3 = 0
<=> ( x2 + x ) - ( 3x + 3 ) = 0
<=> x ( x + 1 ) - 3 ( x + 1 ) = 0
<=> ( x - 3 ) ( x + 1 ) = 0
<=> x = 3 hoặc x = - 1
b. 2x2 - 3 + 5x = 0
<=> 2 ( x2 + 5/2x - 3/2 ) = 0
<=> ( x2 + 5/2x + 25/16 ) - 49/16 = 0
<=> ( x + 5/4 )2 = 49/16
<=>\(\orbr{\begin{cases}x+\frac{5}{4}=\frac{7}{4}\\x+\frac{5}{4}=-\frac{7}{4}\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
a) \(x^2-2x-3=0\)
\(x^2-2x+1-4=0\)
\(\left(x-1\right)^2-4=0\)
\(\left(x-1-2\right)\left(x-1+2\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
b) \(2x^2-3+5x=0\)
\(2x^2-3+6x-x=0\)
\(\left(2x^2+6x\right)-\left(3+x\right)=0\)
\(2x\left(x+3\right)-\left(3+x\right)=0\)
\(\left(x+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)