Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x+\frac{1}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x+\frac{1}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-1}{5}\end{cases}}}\)
\(\left(x-2\right)\left(3+x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3+x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(\left(x-3\right)\left(x+9\right)>0\)
Th1 : \(\hept{\begin{cases}x-3>0\\x+9>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-9\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x-3< 0\\x+9< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -9\end{cases}\Rightarrow}x< -9}\)
Kết quả: Giải bất phương trình
\(=\left(-\infty-\frac{73x+131}{62}\right)\)z thôi
a) \(\left(x+5\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+5>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x+5< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-5\\x< 2\end{cases}}\) hoặc \(\hept{\begin{cases}x< -5\\x>2\end{cases}}\) (loại)
Vậy -5 < x < 2
b) \(\left(x+2\right)\left(x-\frac{3}{5}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x+2>0\\x-\frac{3}{5}>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+2< 0\\x-\frac{3}{5}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>-2\\x>\frac{3}{5}\end{cases}}\) hoặc \(\hept{\begin{cases}x< -2\\x< \frac{3}{5}\end{cases}}\)
Vậy x > 3/5 hoặc x < -2
a ) ( x + 5 )( x - 2 ) < 0
=> x + 5 duong va x - 2 am hoac x + 5 am va x - 2 duong
Neu x + 5 duong va x - 2 am thi
-5 < x < 2
=> x \(\in\left\{1;0;-1;-2;-3;-4\right\}\)
Neu x + 5 am va x - 2 duong thi :
x < -5 va x > 2
Vi 2 dieu kien tren mau thuan vs nhau nen x\(\varnothing\)trong truong hop nay
\(\left|x\right|=2\frac{1}{3}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)
\(\left|x\right|=-3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
\(\left|x-1.7\right|=2.3\Rightarrow\orbr{\begin{cases}x-1.7=2.3\\x-1.7=-2.3\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\-\frac{3}{5}\end{cases}}}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\-\frac{5}{4}\end{cases}}}\)
a) \(\left|x\right|=2\frac{1}{3}\)
\(\left|x\right|=\frac{7}{3}\)
\(\Rightarrow x=\frac{7}{3}\) hoặc \(x=-\frac{7}{3}\)
b) \(\left|x\right|=-3\)
\(\Rightarrow\) Không có giá trị x nào thỏa mãn đề bài
c) \(\left|x\right|=-3,15\)
\(\Rightarrow\) Không có giá trị x nào thỏa mãn đề bài
d) \(\left|x-1,7\right|=2,3\)
\(\Rightarrow x-1,7=2,3\) hoặc \(x-1,7=-2,3\)
Với \(x-1,7=2,3\)
\(x=2,3+1,7=4\)
Với \(x-1,7=-2,3\)
\(x=-2,3+1,7=-0,6\)
Vậy \(x\in\left\{4;-0,6\right\}\)
e) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=0+\frac{1}{2}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow x+\frac{3}{4}=\frac{1}{2}\) hoặc \(x+\frac{3}{4}=-\frac{1}{2}\)
Với \(x+\frac{3}{4}=\frac{1}{2}\)
\(x=\frac{1}{2}-\frac{3}{4}=\frac{2}{4}-\frac{3}{4}=\frac{-1}{4}\)
Với \(x+\frac{3}{4}=-\frac{1}{2}\)
\(x=-\frac{1}{2}-\frac{3}{4}=-\frac{2}{4}-\frac{3}{4}=-\frac{5}{4}\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{5}{4}\right\}\)
a, Vì lxl = 2\(\frac{1}{3}\)\(\Rightarrow\) \(\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)\(\Rightarrow\)Vậy ...
b, Vì lxl \(\ge\) 0 mà lxl = -3 => ko tìm đc x
c, lập luận tg tự phần b
d, Vì lx-1.7l =2.3 \(\Rightarrow\)\(\orbr{\begin{cases}x-1,7=2,3\\x-1,7--2,3\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=2,3+1,7\\x=-2,3+1,7\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=4\\x=-0,6\end{cases}}\)Kết luận
e, Vì lx+3/4l -1/2 = 0 => lx+3/4l = 1/2 \(\Rightarrow\)\(\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}\)
Kết luận
a, x=-2 1/3 hoặc x=2 1/3
b, không tồn tại x vì /x/>=0
c, tương tự b
d,x-1,7=2,3 hoặc x-1,7=-2,3 pn tự lm tiếp ha
e,x+3/4=1/2 hoặc x+3/4=-1/2
a)
\(3x\left(x+\frac{1}{5}\right)=0\)
=>_3x=0
|_x+1/5=0
=> _x=0
|_x=-15
b)(x-2)(3+x)=0
=> _x-2=0
|_ 3+x=0
=> _x=2
|_x=-3
c) x khác -9 và 3
4>x>-9