Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\) ( cái đề hình như có 1 phân số \(\frac{2}{9}\) đúng không bạn )
\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=1:\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=18\)
\(\Leftrightarrow\)\(x=18-1\)
\(\Leftrightarrow\)\(x=17\)
Vậy \(x=17\)
Chúc bạn học tốt ~
a/(x+1)+(x+2)+...+(x+100)=5750
x+1+x+2+...+x+100=5750
100x+(1+2+...+100)=5750
100x+50.(100+1)=5750
100x+5050=5750
100x=700
x=7.
b/ 1/1.2+1/2.3+...+1/x(x+1)=2015/2016
1/1-1/2+1/3-1/4+...+1/x-1/x+1=2015/2016
1-1/x+1=2015/2016
1/x+1=1/2016
x+1=2016
x=2015
1/21 = 2/42 = 1/7-1/8
1/28 = 2/56 = 1/8-1/9
.....
1/(x*(x+1)) = 1/x -1/(x+1)
cộng lại với nhau ta sẽ được 1/7 - 1/(x+1) = 2/9
suy ra 1/(x+1) = -5/62 :D
* ĐK: \(x\ne0\)
Đề ra ...<=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{9}\)
<=> \(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
<=> \(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{6}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
<=>\(\frac{1}{x+1}\left(1-\frac{1}{x}\right)=\frac{1}{6}-\frac{1}{9}\)
<=> \(\frac{x-1}{x\left(x+1\right)}=\frac{1}{36}\)
<=> \(\frac{x-1}{x\left(x-1\right)}=\frac{x-1}{36.\left(x-1\right)}\)
=> x(x-1) = 36. (x-1) => x =36
\(\frac{2}{2}.\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x+\left(x+1\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2}{9}\)
\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
x+1=18
x=18-1
x=17
\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{\left(x+1\right)}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}\Leftrightarrow x+1=18\Leftrightarrow x=17\)
=>2/42+2/56+2/72+...+2/(x.(x+1))=2/9
=>2/(6*7)+2/(7*8)+2/(8*9)+......+2/((x+(x+1))=2/9
=>1/6-1/7+1/7-1/8+1/8-1/9+....+1/x-1/x+1=2/9
=>1/6-1/x+1=2/9
=>1/x+1=1/6-2/9
Tự làm tiếp nhé
\(b)\) Ta có: \(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45\text{ }}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=1\)
\(\Leftrightarrow x=1+\frac{37}{45}\)
\(\Leftrightarrow x=\frac{82}{45}\)
Vậy \(x=\frac{82}{45}\)
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
Đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)
=> \(A=\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\)
=> \(\frac{A}{2}=\frac{1}{6}-\frac{1}{x+1}=\frac{x+1-6}{6\left(x+1\right)}=\frac{x-5}{6\left(x+1\right)}\) => \(A=\frac{x-5}{3\left(x+1\right)}=\frac{2}{9}\)
<=> 3(x-5)=2(x+1) <=> 3x-15=2x+2 <=> x=17
Đáp số: x=17