Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(81^{2n}.27^n=9^5\)
\(3^{8n}.3^{3n}=3^{10}\)
\(3^{11n}=3^{10}\)
\(11n=10\)
\(n=\frac{10}{11}\)
81^2n=3^8n
27^n=3^3n
->81^2n*27^n=3^12n mà 9^5=3^10->12n=10->n=10/12
a)27n:3n=9
(27:3)n=9
9n=91
n=1
Vậy n=1
b)\(\left(\frac{25}{5}\right)^n=5\)
\(5^n=5^1\)
n=1
Vạy n=1
c)\(\left(-\frac{81}{3}\right)^n=-243\)
\(\left(-27\right)^n=\left(-3\right)^5\)
\(\left[\left(-3\right)^3\right]^n=\left(-3\right)^5\)
\(\left(-3\right)^{3n}=\left(-3\right)^5\)
\(3n=5\)
\(n=\frac{5}{3}\)
Vậy \(n=\frac{5}{3}\)
d)\(\frac{1}{2}.2^n+4.2^n=9.5^n\)
\(2^n.\left(\frac{1}{2}+4\right)=9.5^n\)
\(2^n.\frac{9}{2}=3^2.5^n\)
a)\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}=3^{24}\left(3^4-3^3-3^2\right)\)
\(=3^{24}.45⋮45\)
\(\Rightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right)\)
1) 3^1994+4^1993-3^1992
= 3^1992.(9+3-1)=3^1992.11 chia hết cho 11
=> 3^1994+3^1993-3^1992 chia hết cho 11
(27.9)^n = 9^27:9^2
243^n=9^25
3^5n=3^50
n =10