K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

a) \(3x^3-6x^2=0\)

\(3x^2\left(x-2\right)=0\)

\(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) \(x\left(x-4\right)-12x+48=0\)

\(x^2-4x-12x+48=0\)

\(x^2-16x+48=0\)

\(\left(x-12\right)\left(x-4\right)=0\)

\(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

\(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) Viết thiếu nha :v

d) \(2x\left(x-5\right)-x\left(2x+3\right)=16\)

\(2x^2-10x-x^2-2x^2-3x=16\)

\(-13x=16\)

\(x=-\frac{16}{13}\)

e) \(\left(4x^2-1\right)-\left(x-1\right)^2=-3\)

\(4x^2-1-x^2+2x-1=-3\)

\(3x^2-2+2x=-3\)

\(3x^2-2+2x+3=0\)

\(3x^2+1+2x=0\)

Vì \(3x^2+1+2x>0\)nên: 

\(x\in\varnothing\)

26 tháng 8 2019

A) 3x3 - 6x2 = 0

=> 3x2(x - 2) = 0

=> \(\orbr{\begin{cases}3x^2=0\\x-2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

b) x(x - 4) - 12x + 48 = 0

=> x(x - 4) - 12(x - 4) = 0

=> (x - 12)(x - 4) = 0

=> \(\orbr{\begin{cases}x-12=0\\x-4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=12\\x=4\end{cases}}\)

c) x(x - 4) - (x2 - 8) = x2 - 4x - x2 + 8 = 4x + 8 

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

15 tháng 8 2020

a, 15x3 - 15x = 0    

15x(x2-1)=0

15x=0 hoặc x2-1=0  (tự tính nhoa)

b,3x2-6x+3=0

3(x2-2x+1)=0

x-2x+1=0:3=3

x2-2x=3-1=2

x(x-2)=0

x=0 hoặc x-2=0 (tự tính nhoa)

15 tháng 8 2020

Bài làm

a) 15x3-15x=0

<=> 15x( x2 - 1 ) = 0

<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy x = { 0; + 1 }

b) 3x- 6x + 3 = 0

<=> 3( x2 - 2x + 1 ) = 0

<=> x2 - 2x + 1 = 0

<=> ( x - 1 )2 = 0

<=> x - 1 = 0

<=> x = 1

Vậy x = 1

c) 5(x - 1) - 3x(1 - x) = 0

<=> 5(x - 1) + 3x(x - 1) = 0

<=> (5 + 3x)(x - 1) = 0

<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)

Vậy x = { -5/3; 1 }

e) -7(x + 2) = 2x(x + 2) 

<=> -7(x + 2 ) - 2x( x + 2 ) = 0

<=> (x + 2)(-7 - 2x) = 0

<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)

Vậy x = { -2; x = -7/2 }

f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)

<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0

<=> (3x + 5)(2x - 3 - x + 1) = 0

<=> (3x + 5)(x - 2) = 0

<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)

Vậy x = { -5/3; 2 }

12 tháng 12 2019

a)2x.(3x+5)-x.(6x-1)=33

=>\(6x^2+10x-6x^2+x=33\)

=>11x=33

=>x=3

12 tháng 12 2019

b)x(3x-1)+12x-4=0

=>x(3x-1)+4(3x-1)=0

=>(x-4)(3x-1)=0

=>x-4=0 hoặc 3x-1=0

+)x-4=0 +)3x-1=0

=>x=4 =>x=\(\frac{1}{3}\)

12 tháng 2 2019

a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+20x+25=x^2+4x+4\)

\(\Leftrightarrow4x^2-x^2+20x-4x=4-25\)

\(\Leftrightarrow3x^2+16x=-21\)

\(\Leftrightarrow3x^2+16x+21=0\)

\(\Leftrightarrow3x^2+9x+7x+21=0\)

\(\Leftrightarrow3x\left(x+3\right)+7\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{-3;\dfrac{-7}{3}\right\}\)

e)\(\left(x-2\right)\left(2x-3\right)=\left(4-2x\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)-\left(4-2x\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3-4+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S=\(\left\{2;\dfrac{7}{4}\right\}\)

g)\(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-\left(2x+1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\4\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{4;\dfrac{-1}{2}\right\}\)

10 tháng 7 2018

\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)

\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)

\(12x^2-48-12x^2-36x-27\) \(=52\)

\(-36x-75=52\)

\(-36x=127\)

\(x=\frac{-127}{36}\)

\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)

\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)

\(4x^2+4x-1-4x^2+4+2x=5\)

\(6x+3=5\)

\(6x=2\)

\(x=3\)

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)

\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)

\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)

\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)

\(x^3-2-x^3-3x^2+9x+27=15\)

\(-3x^2+9x+25=15\)

\(-3x^2+9x+10=0\)

\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)

\(x=\frac{9+\sqrt{201}}{6}\)

các câu còn lại tương tự

21 tháng 1 2018

\(a,2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{3;-\dfrac{5}{2}\right\}\)

\(b,\left(2-3x\right)\left(x+11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow-\left(3x-2\right)\left(x+11\right)-\left(3x-2\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(-x-11-2+5x\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(4x-13\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\4x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{\dfrac{2}{3};\dfrac{13}{4}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-\dfrac{1}{2};3\right\}\)

\(d,\left(x-1\right)\left(2x-1\right)=x\left(1-x\right)\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)+x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1+x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;\dfrac{1}{3}\right\}\)

\(e,0,5x\left(x-3\right)=\left(x-3\right)\left(1,5x-1\right)\)

\(\Leftrightarrow0,5x\left(x-3\right)-\left(x-3\right)\left(1,5x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(0,5x-1,5x+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{1;3\right\}\)

\(f,\left(x+2\right)\left(3-4x\right)=x^2+4x=4\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-x^2-4x-4=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)\left(3-4x-x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\-5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-2;\dfrac{1}{5}\right\}\)

\(g,\left(2x^2+1\right)\left(4x-3\right)=\left(x-12\right)\left(2x^2+1\right)\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3\right)-\left(x-12\right)\left(2x^2+1\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(4x-3-x+12\right)=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\forall x\\3x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x^2+1>0\\x=-3\end{matrix}\right.\)

Vậy nghiệm của pt là \(S=\left\{-3\right\}\)

\(h,2x\left(x-1\right)=x^2-1\)

\(\Leftrightarrow2x\left(x-1\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy nghiệm của pt là \(S=\left\{1\right\}\)