Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-2^3\)
\(\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Leftrightarrow2^x=2^3\)
\(\Leftrightarrow x=3\)
Vậy x = 3
2 x + 2x+1+ 2 x+2+.......+ 2x+2015=22019-8
=2x.( 1+2+22+23+.....+ 2 2015)=22019- 23
đặt A= 1+2+22+...+22015
=>2A=2+22+23+..+22016
=>2A -A = ( 2+ 22+23+......+22016)-(1+2+22+........+22015)=A=22016-1
\(\Rightarrow\)2x.(22016-1)=23.(22016-1)
=>x=3
Theo đầu bài ta có:
\(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8\)
\(\Rightarrow2\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow\left(2^{x+1}+2^{x+2}+2^{x+3}+...+2^{x+2016}\right)-\left(2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}\right)=2^{2019}-8\)
\(\Rightarrow2^{x+2016}-2^x=2^{2019}-8\)
\(\Rightarrow2^x\cdot2^{2016}-2^x=2^3\cdot2^{2016}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\)
\(\Rightarrow x=3\)
a) \(\Rightarrow2^x.1+2^x.2+2^x.3+...+2^x.2015=2^{2019}-2^3\)
\(\Rightarrow2^x.\left(1+2+2^2+2^3+...+2^{2015}\right)=2^3.\left(2^{2016}-1\right)\)
Đặt \(A=1+2+2^2+2^3+...+2^{2015}\)
\(\Rightarrow2.A=2+2^2+2^3+...+2^{2016}\)
\(\Rightarrow A=2^{2016}-1\)
\(\Rightarrow2^x.\left(2^{2016}-1\right)=2^3.\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
Vậy x=3
Lời giải:
$A=2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}$
$2A=2^{x+1}+2^{x+2}+....+2^{x+2016}$
$2A-A=2^{x+2016}-2^x$
$A=2^{x+2016}-2^x=2^x(2^{2016}-1)$
Vậy:
$2^x(2^{2016}-1)=2^{2019}-8=2^{2019}-2^3=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
em cảm ơn ạ