Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{8}{x}=\frac{x}{4}\)
\(=>x\cdot x=8\cdot4\)
\(=>x^2=32\)
\(=>x=\sqrt{32}\)
\(c,\frac{2x+3}{6}=\frac{x+1}{-8}\)
\(=>-8\cdot\left(2x+3\right)=6\cdot\left(x+1\right)\)
\(=>-16x-24=6x+6\)
\(=>-16x-6x=6+24\)
\(=>-22x=30\)
\(=>x=\frac{30}{-22}=-\frac{15}{11}\)
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
VÍ DỤ
Giải:
• Xét đẳng thức véc tơ: 1X1 2X2 3X3 X
• Suy ra hệ phương trình có ma trận mở rộng nhận X1, X2, X3, X làm các cột
2 3 1 1 2 3 1 1 2
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
a) \(\left(2y-1\right)^{1000}-\left(3+y\right)^{1000}=0\)
\(\Rightarrow\left(2y-1\right)^{1000}=\left(3+y\right)^{1000}\)
\(\Rightarrow2y-1=3+y\)
\(2y-y=3+1\)
\(y=4\)
b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
\(\left(x-\frac{2}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(\Rightarrow x-\frac{2}{9}=\left(\frac{2}{3}\right)^2\)
\(x-\frac{2}{9}=\frac{4}{9}\)
\(x=\frac{2}{3}\)
c) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\left(\left(2x-1\right)^3\right)^2=\left(\left(2x-1\right)^4\right)^2\)
\(\Rightarrow\left(2x-1\right)^3=\left(2x-1\right)^4\)
\(8x^3-1=16x^4-1\)
\(16x^4-8x^3=0\)
\(8x^3\left(2x-1\right)=0\)
Nếu \(8x^3=0\) thì \(x^3=0\Rightarrow x=0\)
Nếu \(2x-1=0\)thì \(2x=1\Rightarrow x=\frac{1}{2}\)
Vậy x=0 và x=1/2
\(\left|x+1\right|,\left|x-2\right|,\left|x+3\right|\ge0\)
\(6\ge0\Rightarrow x\ge0\)
\(\left|x+1\right|+\left|x-2\right|+\left|x+3\right|=6\)
\(\Rightarrow\left(x+1\right)+\left(x-2\right)+\left(x+3\right)=6\)
\(\Rightarrow\left(x+x+x\right)+\left(1-2+3\right)=6\)
\(\Rightarrow3x+2=6\)
\(\Rightarrow3x=6-2\)
\(\Rightarrow3x=4\)
\(\Rightarrow x=\frac{4}{3}\)
Mình làm từ ý b nhá :
b) Ta có : |x| = 2x - 1
\(\Leftrightarrow\orbr{\begin{cases}x=2x-1\\x=1-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=-1\\x+2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-1\\3x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)
c) Ta có : |2x - 1| = x + 4
\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+4\\2x-1=-x-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=4+1\\2x+x=-4+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\3x=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
đăng ít 1 thôi bn, nhiều nhất 3 câu 1 lần thôi đăng lắm ngại làm
a) x + \(\dfrac{1}{3}=\dfrac{3}{6}\)
x = \(\dfrac{3}{6}-\dfrac{1}{3}\)
x = \(\dfrac{1}{6}\)
b) 2x + \(\dfrac{1}{3}=\dfrac{3}{6}\)
2x = \(\dfrac{1}{6}\)
x = \(\dfrac{1}{12}\)
c ) 2x - \(\dfrac{1}{4}=\dfrac{3}{8}\)
2x = \(\dfrac{5}{8}\)
x = \(\dfrac{5}{16}\)