
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-1}\ge0\\\sqrt{x-\sqrt{2x-1}}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge\sqrt{2x-1}\Leftrightarrow\left(x-1\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{1}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2-2x\Leftrightarrow\sqrt{\left(x\right)^2-\left(\sqrt{2x-1}\right)^2}=1-x\)
\(\Leftrightarrow\sqrt{x^2-2x+1}=1-x\Leftrightarrow\left|x-1\right|=1-x\Rightarrow x-1\le0\)(vì \(\left|a\right|=-a\))
\(\Rightarrow x\le1\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(\frac{1}{2}\le x\le1\)
b) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-5}\ge0\\x-2-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{5}{2}\\\left(x-2\right)^2\ge2x-5\Leftrightarrow\left(x-3\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{5}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+2+3\sqrt{2x-5}\right)\left(x-2-\sqrt{2x-5}\right)}=2\left(4-x-\sqrt{2x-5}\right)\)
Đặt \(x+2=a;\sqrt{2x-5}=b\)(\(b\ge0\)), ta được phương trình tương đương:
\(\sqrt{\left(a+3b\right)\left(a-4-b\right)}=-a+6-b\)
\(\Leftrightarrow a^2-4a-ab+3ab-12b-3b^2=36+a^2+b^2+2ab-12a-12b\)
\(\Leftrightarrow4b^2-8a+36=0\Leftrightarrow b^2=2a-9\Leftrightarrow2x-5=2x+4-9\Leftrightarrow x\in R\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(x\ge\frac{5}{2}\)

b) pt \(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Đk: \(x\ge\dfrac{5}{2}\)
\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\) (*)
TH1: \(\sqrt{2x-5}-1>0\Leftrightarrow x>3\)
(*) \(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\Leftrightarrow2\sqrt{2x-5}=2\Leftrightarrow\sqrt{2x-5}=1\Leftrightarrow x=3\left(L\right)\)
TH2: \(\sqrt{2x-5}+3< 0\) (vô lý)
TH3: \(x\le3\)
(*) \(\Leftrightarrow\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\Leftrightarrow4=4\) (luôn đúng)
KL: \(\dfrac{5}{2}\le x\le3\)

Câu a)
ĐK: \(x\geq \frac{1}{2}\)
Ta có:
\(\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
\(\Rightarrow \sqrt{2x-2\sqrt{2x-1}}=2\)
\(\Leftrightarrow \sqrt{(2x-1)-2\sqrt{2x-1}+1}=2\)
\(\Leftrightarrow \sqrt{(\sqrt{2x-1}-1)^2}=2\)
\(\Leftrightarrow |\sqrt{2x-1}-1|=2\)
\(\Rightarrow \left[\begin{matrix} \sqrt{2x-1}-1=2\\ \sqrt{2x-1}-1=-2\end{matrix}\right.\Rightarrow \left[\begin{matrix} \sqrt{2x-1}=3\rightarrow 5(t/m)\\ \sqrt{2x-1}=-1(\text{vô lý})\end{matrix}\right.\)
Vậy $x=5$
Câu b)
ĐK: \(x\geq \frac{5}{2}\)
Nhân cả 2 vế với \(\sqrt{2}\) ta có:
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-6\sqrt{2x-5}}=4\)
Đặt \(\sqrt{2x-5}=a(a\geq 0)\Rightarrow 2x-5=a^2\Rightarrow 2x=a^2+5\)
PT trở thành:
\(\sqrt{a^2+5+4+6a}+\sqrt{a^2+5-4-6a}=4\)
\(\Leftrightarrow \sqrt{a^2+6a+9}+\sqrt{a^2-6a+1}=4\)
\(\Leftrightarrow \sqrt{(a+3)^2}+\sqrt{a^2-6a+1}=4\)
\(\Leftrightarrow a+3+\sqrt{a^2-6a+1}=4\)
\(\Rightarrow \sqrt{a^2-6a+1}=1-a\)
\(\Rightarrow a^2-6a+1=(1-a)^2=a^2-2a+1\) (bình phương 2 vế)
\(\Rightarrow -6a=-2a\Rightarrow a=0\)
$a=0$ kéo theo $x=\frac{5}{2}$ (thử lại thấy t/m)
Vậy..........

1/ \(\sqrt{2x+5}=\sqrt{1-x}\)\(\left(ĐKXĐ:1\ge x\ge-\frac{5}{2}\right)\)
\(\Leftrightarrow2x+5=1-x\Leftrightarrow3x=-4\Leftrightarrow x=-\frac{4}{3}\left(TM\right)\)
KL:.......................
2/ Tương tự
3/ \(\sqrt{2x^2-3}=\sqrt{4x-3}\) \(\left(ĐKXĐ:x\ge\frac{3}{4}\right)\)
\(\Leftrightarrow2x^2-3=4x-3\Leftrightarrow2x^2-4x=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=2\left(TM\right)\end{matrix}\right.\)
4/ Tương tự
5/ Tương tự
6/ \(\sqrt{x^2-x-6}=\sqrt{x-3}\left(ĐKXĐ:x\ge3\right)\)
\(\Leftrightarrow x^2-x-6=x-3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
KL:.................
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
=> \(\sqrt{2}.\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{2}.\sqrt{x-2-\sqrt{2x-5}}=4\)
=> \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
=> \(\sqrt{\left(\sqrt{2x-5}\right)^2+2\sqrt{2x-5}.3+3^2}+\sqrt{\left(\sqrt{2x-5}\right)^2-2\sqrt{2x-5}.1+1}=4\)
=> \(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Vậy điều kiên của phương trình là : 2x - 5 \(\ge\) 0 <=> x \(\ge\) 5/2. Khi đó, PT đã cho tương đương với
\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
<=> \(\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)
+) Nếu \(\sqrt{2x-5}-1\ge0\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì phương tringf trở thành
\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)
<=> \(\sqrt{2x-5}=2\) <=> 2x - 5 = 4 <=> x = 4,5 ( Thỏa mãn)
+) Nếu \(0\le\sqrt{2x-5}<1\Leftrightarrow2,5\le x<3\) thì
\(\sqrt{2x-5}+3-\sqrt{2x-5}+1=4\)
<=> 4 = 4 Luôn đúng
=> 2,5 \(\le\) x < 3 đều là nghiệm của PT
Vậy PT đã cho có nghiệm x = 4,5 ; 2,5 \(\le\) x < 3