\(\sqrt{4x-4}\)+\(\sqrt{25x-25}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

ĐK: \(x\ge1\)

Ta có:

\(\sqrt{4x-4}+\sqrt{25x-25}+\sqrt{81x-81}=1\)

\(\Rightarrow\sqrt{4\left(x-1\right)}+\sqrt{25\left(x-1\right)}+\sqrt{81\left(x-1\right)}=1\)

\(\Rightarrow2\sqrt{x-1}+5\sqrt{x-1}+9\sqrt{x-1}=1\)

\(\Rightarrow16\sqrt{x-1}=1\)

\(\Rightarrow\sqrt{x-1}=\dfrac{1}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{4}\\x-1=-\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 tháng 10 2018

bằng \(-\)1 mà bạn

20 tháng 1 2019

a.

\(\sqrt{4x^2+4x+1}-\sqrt{25x^2+10x+1}=0\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}-\sqrt{\left(5x+1\right)^2}=0\)

\(\Leftrightarrow2x+1-\left(5x+1\right)=0\)

\(\Leftrightarrow-3x=0\Leftrightarrow x=0\)

b.

\(\sqrt{x^4-16x^2+64}=\sqrt{25x^2+10x+1}\)

\(\Leftrightarrow\sqrt{\left(x^2-8\right)^2}=\sqrt{\left(5x+1\right)^2}\)

\(\Leftrightarrow x^2-8=5x+1\)

\(\Leftrightarrow x^2-5x+\dfrac{25}{4}=\dfrac{61}{4}\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{61}{4}\)

............................

tương tự ..

c: \(\Leftrightarrow\sqrt{x-5}\left(\sqrt{x+5}-1\right)=0\)

=>x-5=0 hoặc x+5=1

=>x=-4 hoặc x=5

d: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=7/2 hoặc x=-3/2

e: \(\Leftrightarrow\sqrt{x-2}\left(1-3\sqrt{x+2}\right)=0\)

=>x-2=0 hoặc 3 căn x+2=1

=>x=2 hoặc x+2=1/9

=>x=-17/9 hoặc x=2

6 tháng 9 2019

a) x=49

b) x=4

c) x = 2 hoặc x = -2

d) x= 11,17355372

e) x =10

f) x=2

g)x = 10 000 000 ( nếu theo đề của bạn) và x=0,94 ( nếu theo đề bđ)

h) x =4

k) x = 4/3 hoặc x = -2/3

l) x = 2,5

m) x = 0,5

n) x=-0,5

6 tháng 9 2019

lưu ý: n) nếu theo đề bd thì: x= -1,5 hoặc x=2,5

a: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

hay x=-1

b: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}\cdot\dfrac{3}{2}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\)

=>x-1=16

hay x=17

20 tháng 10 2018

a,

\(\sqrt{1-4x+4x^2}=5\\ \sqrt{\left(2x-1\right)^2}=5\\ \left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\\ \left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

20 tháng 10 2018

b,

\(\sqrt{4-5x}=12\\ 4-5x=144\\ x=-28\)

26 tháng 7 2017

Câu hỏi này là giải PT

7 tháng 12 2017

dài v nhg thui cố làm v

a)\(\sqrt{4x^2}-20x+25+2x=5\)

=> \(2x-18x+20=0\)

=> \(-16x+20=0\)

=> \(-4x+5=0\)

=> \(-4x=-5\)

=> \(x=\dfrac{5}{4}\)

vậy........................................................

d) \(\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1-1}\)

cau này đề sai

ok baby

4 tháng 7 2019

Làm hơi tắt xíu, có gì ko hiểu cmt nha :>

\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)

\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)

4 tháng 7 2019

\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)

Câu cuối chưa nghĩ ra, sorry :<

10 tháng 7 2015

\(a,\sqrt{25x^2}=10\)

\(\sqrt{\left(5x\right)^2}=10\)

\(5x=10\)

\(x=2\)

 

1 tháng 4 2016

b. <=> \(\sqrt{4\left(x^2-1\right)}=2\sqrt{15}\)     ĐKXĐ: x>=1,x>=-1

<=> \(4\left(x^2-1\right)=60\Leftrightarrow x^2-1=15\Leftrightarrow x^2-16=0\Leftrightarrow\left(x-4\right)\left(x+4\right)=0\)

<=>x=+-4

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))