Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
b) Ta có : \(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm4;\pm7;\pm12;\pm28\right\}\)
Mà \(2x+1\)là số chẵn
\(\Rightarrow2x+1\in\left\{\pm1;\pm7\right\}\)
...
c) Ta có : \(x+15\)là bội của \(x+3\)
\(\Rightarrow x+15⋮x+3\)
\(\Rightarrow x+3+12⋮x+3\)
Vì \(x+3⋮x+3\)
\(\Rightarrow12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng nha
\(b,28⋮2x+1\)
\(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Ta có bảng
2x+1 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
2x | 0 | -2 | 1 | -3 | 6 | -8 | 13 | -15 |
x | 0 | -1 | 1/2 | -3/2 | 3 | -4 | 13/2 | -15/2 |
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng
\(d,\left(x+1\right)\left(y-1\right)=3\)
\(\Rightarrow x+1;y-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
Ta có: 2x+1= 2x+6-6-1 = 2(x+3)-7
Mà 2(x+3) là B(x+3), Để 2x+1 là B(x+3) thì -7 phải là B(x+3) hay x+3 là Ư(-7)
Ư(-7)={1;7}
x thuộc{4}
\(\Rightarrow2\left(x+1\right)-5⋮x+1\\ \Rightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x\in\left\{-6;-2;0;4\right\}\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
\(\Rightarrow2\left(x+1\right)-5⋮\left(x+1\right)\\ \Rightarrow5⋮\left(x+1\right)\\ \Rightarrow x+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x\in\left\{-6;-2;0;4\right\}\)
2x-3 là bội của x+1
\(\Rightarrow2x-3⋮x+1\\ \Rightarrow2\left(x+1\right)-5⋮x+1\)
mà \(2\left(x+1\right)⋮x+1\forall x\\ \)
\(\Rightarrow5⋮x+1\\ \Rightarrow x+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=5\\x+1=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=4\\x=-6\end{matrix}\right.\)