\(\sqrt{x+19},\sqrt{2x+10},\sqrt{3x+13},\sqrt{4x+37}\)đều là các số...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

Mình cần chứng minh: x + 19; 2x + 10; 3x + 13; 4x + 37 là số chính phương 

Thật vậy: Đặt x + 19 = a2 ; 4x + 37 = b2 (g/s a; b \(\ge\)0)

=> \(4a^2-b^2=39\)

<=> (2a + b ).(2a - b) = 3.13 = 1.39

Vì 2a + b > 2a - b. Nên ta có các trường hợp sau

+) 3a + b = 13; 2a - b = 3 => 2a = 8; b = 5 => a = 4; b = 5 => x = - 3

Thay vào ta có \(\sqrt{x+19},\sqrt{2x+10},\sqrt{3x+13},\sqrt{4x+37}\)là các số nguyên 

=> x = - 3 thỏa mãn

+) 3a + b = 39; 2a - b = 1 => 2a = 20; b = 19 => a = 10; b = 19 => x = 81

Thay vào ta có \(\sqrt{2x+10}\)không là số nguyên 

=> x = 81 loại

7 tháng 8 2015

\(x+\sqrt{2012}=a\in Z\Rightarrow x=a-\sqrt{2012}\text{ }\)

\(\frac{13}{x}-\sqrt{2012}=\frac{13}{a-\sqrt{2012}}-\sqrt{2012}=\frac{13\left(a+\sqrt{2012}\right)}{a^2-2012}-\sqrt{2012}\)

\(=\frac{13a}{a^2-2012}+\left(\frac{13}{a^2-2012}-1\right)\sqrt{2012}=\frac{13a}{a^2-2012}+\frac{2025-a^2}{a^2-2012}\sqrt{2012}\)

Do số này là số nguyên nên \(\frac{13a}{a^2-2012}\in Z\text{ và }\frac{2025-a^2}{a^2-2012}=0\)

\(\Leftrightarrow a^2=2025\text{ và }\frac{13a}{a^2-2012}\in Z\)

\(\Leftrightarrow a=45\text{ hoặc }a=-45\text{ và }\frac{13a}{a^2-2012}\in Z\)

\(\Leftrightarrow a=45\text{ hoặc }a=-45\)

Vậy \(x=45-\sqrt{2012}\text{ hoặc }x=-45-\sqrt{2012}\)

8 tháng 8 2015

Mr Lazy siêu quá đi 

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

7 tháng 9 2020

a,  \(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}-\frac{\sqrt{x}+3}{5-\sqrt{x}}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\sqrt{x}+2}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{\sqrt{x}-5}-\frac{3x+4\sqrt{x}-5}{x-4\sqrt{x}-5}\)

\(P=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}-\frac{3x+4\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{x-3\sqrt{x}-10+x+4\sqrt{x}+3-3x-4\sqrt{x}+5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{-x-3\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}\)

\(P=\frac{\left(\sqrt{x}+1\right)\left(-\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-5\right)}=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\)

để P > -2 

\(\Rightarrow\frac{-\sqrt{x}-2}{\sqrt{x}-5}>-2\) đoạn này đang chưa nghĩ ra

c, \(P=\frac{-\sqrt{x}-2}{\sqrt{x}-5}\in Z\)  \(\Rightarrow-\sqrt{x}-2⋮\sqrt{x}-5\)

=> -căn x + 5 - 7 ⋮ căn x - 5

=> -(căn x - 5) - 7 ⋮ căn x - 5 

=> 7 ⋮ x - 5 đoạn này dễ

8 tháng 9 2020

a, Với \(x\ge0;x\ne25\)thì \(P=\frac{\sqrt{x}+2}{5-\sqrt{x}}\)  đoạn này đúng rồi 

\(P>-2\)\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}>-2\)

\(\Leftrightarrow\frac{\sqrt{x}+2}{5-\sqrt{x}}+2>0\)

\(\Leftrightarrow\frac{12-\sqrt{x}}{5-\sqrt{x}}>0\)

Xét 2 trường hợp cùng âm, cùng dương hoặc "trong trái ngoài cùng"

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}>12\\0\le\sqrt{x}< 5\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>144\\0\le x< 25\end{cases}}\)

Làm luôn cho đầy đủ =)

7 tháng 10 2018

Ta có \(A=\frac{1}{\sqrt{4x^2+4x+1}}=\frac{1}{\sqrt{\left(2x+1\right)^2}}=\frac{1}{\left|2x+1\right|}\)

\(B=\frac{2x-2}{\sqrt{x^2-2x+1}}=\frac{2\left(x-1\right)}{\sqrt{\left(x-1\right)^2}}=\frac{2\left(x-1\right)}{\left|x-1\right|}\)

7 tháng 10 2018

Đọc lại đề đi bạn ơi :v