Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
a, Theo bài ra ta có : M = N
hay \(\frac{2}{3}x-\frac{1}{3}=3x-2\left(x-1\right)\)
\(\Leftrightarrow\frac{2x-1}{3}=3x-2x+2\)
\(\Leftrightarrow\frac{2x-1}{3}=x+2\Leftrightarrow\frac{2x-1}{3}=\frac{3x+6}{3}\)
Khử mẫu : \(\Rightarrow2x-1=3x+6\Leftrightarrow-x-7=0\Leftrightarrow x=-7\)
b, Theo bài ra ta có : M + N = 8
hay \(\frac{2x}{3}-\frac{1}{3}+2x-2\left(x-1\right)=8\)
\(\Leftrightarrow\frac{2x-1}{3}+2x-2x+2=8\)
\(\Leftrightarrow\frac{2x-1}{3}-6=0\Leftrightarrow\frac{2x-1-18}{3}=0\Leftrightarrow2x-19=0\Leftrightarrow x=\frac{19}{2}\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
1.
a.\(\Leftrightarrow7x-5x=3+12\)
\(\Leftrightarrow2x=15\Leftrightarrow x=\dfrac{15}{2}\)
b.\(\Leftrightarrow6x-10-7x-7=2\)
\(\Leftrightarrow x=-19\)
c.\(\Leftrightarrow1-3x=4x-3\)
\(\Leftrightarrow7x=2\Leftrightarrow x=\dfrac{2}{7}\)
d.\(\Leftrightarrow8x^2-4x+12x-6-8x^2-8x-2=12\)
\(\Leftrightarrow-2=12\left(voli\right)\)
\(\Leftrightarrow4x-3x^2+20-15x-9x^2-12x-4+\left(3x+2\right)^3=8x^3-1\)
\(\Leftrightarrow-12x^2-23x+16+27x^3+54x^2+36x+8=8x^3-1\)
\(\Leftrightarrow27x^3+42x^2+13x+24-8x^3+1=0\)
\(\Leftrightarrow19x^3+42x^2+12x+25=0\)
\(\frac{17x+18}{3x^2+x-14}=\frac{a}{x-2}+\frac{b}{3x+7}\)
\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{a\left(3x+7\right)+b\left(x-2\right)}{\left(x-2\right)\left(3x+7\right)}\)
\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{3ax+7a+bx-2b}{3x^2+x-14}\)
\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{3ax+5a+bx}{3x^2+x-14}\)
\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{\left(3a+b\right)x+5a}{3x^2+x-14}\)
Đồng nhất hệ số, ta có: \(\hept{\begin{cases}3a+b=17\\5a=18\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{31}{5}\\a=\frac{18}{5}\end{cases}}\)