Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=17\)
\(\left(\frac{1}{2}\right)^x.\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\left(\frac{1}{2}\right)^x=\frac{17.16}{17}=16\)
\(\left(\frac{1}{2}\right)^x=16=\left(\frac{1}{2}\right)^{-4}\)
=> x = -4
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left(1+\frac{1}{16}\right)=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=16\)
\(\Leftrightarrow\frac{1}{2^x}=\frac{1}{2^{-4}}\)
\(\Rightarrow x=-4\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^4=17\)
\(\left(\frac{1}{2}\right)^x.\left[1+\left(\frac{1}{2}\right)^4\right]=17\)
\(\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\left(\frac{1}{2}\right)^x=17:\frac{17}{16}\)
\(\left(\frac{1}{2}\right)^x=16\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^{-4}\)
\(\Rightarrow\)x = -4
Vậy x = -4
Bài 1:
$M=\frac{27}{x-15}-1$
Để $M$ min thì $\frac{27}{x-15}$ min.
Để $\frac{27}{x-15}$ min thì $x-15$ là số âm lớn nhất
$\Rightarrow x$ là số nguyên lớn nhất nhỏ hơn 15
$\Rightarrow x=14$
Khi đó: $M_{\min}=\frac{42-14}{14-15}=-28$
Bài 2:
\(\left(\dfrac{1}{2}\right)^x+\left(\dfrac{1}{2}\right)^{x-4}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}\left[\left(\dfrac{1}{2}\right)^4+1\right]=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}.\dfrac{17}{16}=17\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{x-4}=16=\left(\dfrac{1}{2}\right)^{-4}\)
$\Rightarrow x-4=-4\Leftrightarrow x=0$
Ta có \(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+4}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left(1+\frac{1^4}{2^4}\right)=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x.\frac{17}{16}=17\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^x=17:\frac{17}{16}=16\)
\(\Leftrightarrow\frac{1}{2^x}=16\Leftrightarrow1=2^{4+x}\Leftrightarrow4+x=0\Leftrightarrow x=-4\)