Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\times\left(3x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)
Vậy x = -2 hoặc x = 1/3
Cảm ơn bạn MMS_Hồ Khánh Châu nheee :))
Nhưng mà bạn đọc kĩ lại đề bài đii
Đây là giá trị nguyên của x mà
1: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+2y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+2y^2\)
\(=3x^2+2y^2+2y^2=3x^2+4y^2\)
2: \(=7\left(x-y\right)+4a\left(x-y\right)-5\)
=-5
3: \(=\left(x-y\right)\left(x^2+xy+y^2\right)-xy\left(x-y\right)+3=3\)
4: \(=\left(x+y\right)^2-4\left(x+y\right)+1=9-12+1=-2\)
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=0+\frac{1}{2}\)
\(x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\left(x-2\right)^2=1^2\)
\(x-2=1\)
\(x=1+2\)
\(x=3\)
c) \(\left(2x-1\right)^3=\left(-8\right)\)
\(\left(2x-1\right)^3=\left(-2\right)^3\)
\(2x-1=\left(-2\right)\)
\(2x=\left(-2\right)+1\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{4}\right)^2\)
\(x+\frac{1}{2}=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{1}{2}\)
\(x=-\frac{1}{4}\)
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
b) \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
c) \(\left(2x-1\right)^2=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}}}\)
(x-\(\frac{1}{2}\) )(y+\(\frac{1}{3}\) )(z-2)=0 và x+2=y+3=z+4
<=> x-\(\frac{1}{2}\)=0 hoặc y+\(\frac{1}{3}\)=0 hoặc z-2=0
+,với z-2=0
=>z=2
=>x+2=y+3=2+4
=>x+2=y+3=6
=. x=4;y=3
+,x-\(\frac{1}{2}\)=0
=>x=\(\frac{1}{2}\)
=>\(\frac{1}{2}\)+2=y+3=z+4
=>\(\frac{5}{2}\)=y+3=z+4
=>y=\(\frac{-1}{2}\);z=\(\frac{-3}{2}\)
+,với y+\(\frac{1}{3}\)=0
=>y=\(\frac{-1}{3}\)
=>x+2=\(\frac{-1}{3}\)+3=z+4
=>x+2=\(\frac{8}{3}\)=z+4
=>x=\(\frac{2}{3}\);z=\(\frac{4}{3}\)
Vậy khi x-\(\frac{1}{2}\)=0 thì x=\(\frac{1}{2}\);y=\(\frac{-1}{2}\);z=\(\frac{-3}{2}\)
khi y+\(\frac{1}{3}\)=0 thì x=\(\frac{2}{3}\);y=\(\frac{-1}{3}\);z=\(\frac{4}{3}\)
khi z-2=0 thì x=4;y=3;z=2
Hiếu Thông Minh ơi giúp mình câu hỏi mình vừa đăng nữa nhé cảm ơn bạn mình sẽ k nhiều cho bạn !!!!!!!!
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
b) Vì \(\left(x-2\right)^2=1\Rightarrow\left\{{}\begin{matrix}x-2=2\\x-2=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy x = 4 hoặc x = 0
c) Vì \(\left(2.x-1\right)^3=-8\Rightarrow2.x-1=-2\Rightarrow2.x=-1\Rightarrow x=-\dfrac{1}{2}\)
d) Vì \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=-\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
a) \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(\left(x-2\right)^2=1\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c) \(\left(2x-1\right)^3=-8\Leftrightarrow2x-1=-2\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\) d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\)
a) \(\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{1}{2}\end{cases}}\)
b) \(\left(x-2\right)^2=1\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
c) \(\left(2x-1\right)^3=-8\)
\(\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
d) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\)
\(\Rightarrow x=-\frac{1}{4}\)
a) x3 = -27
<=> -33 = -27
=> x = -3
b) (2x - 1)3 = 8
<=> 8x3 - 12x2 + 6x - 1 = 8
<=> 8x3 - 12x2 + 6x - 1 - 8 = 0
<=> (2x - 3)(4x2 + 3) = 0
<=> 2x - 3 = 0 hoặc 4x2 + 3 = 0
2x = 0 + 3
2x = 3
x = 3/2
=> x = 3/2
c) x3 = x5
<=> x3 - x5 = 0
<=> x3(1 - x2) = 0
<=> x = 0; 1; -1
=> x = 0; 1; -1
d) (x - 2)2 = 16
<=> (x - 2)2 = 42
<=> x - 2 = 4 hoặc x - 2 = -4
x = 4 + 2 x = -4 + 2
x = 6 x = -2
=> x = 6; -2
g) (2x - 3)2 = 9
<=> (2x - 3)2 = 32
<=> 2x - 3 = 3 hoặc 2x - 3 = -3
2x = 3 + 3 2x = -3 + 3
2x = 6 2x = 0
x = 3 x = 0
=> x = 3; 0
y) 3x3 - 4x = 0
<=> x(3x - 4) = 0
<=> x = 0 hoặc 3x - 4 = 0
3x = 0 + 4
3x = 4
x = 4/3