Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x-3\right)+5⋮x-3\Rightarrow x-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x-3 | 1 | -1 | 5 | -5 |
x | 4 | 2 | 8 | -2(ktm) |
Vì x,y là số nguyên dương mà \(x+1⋮y\)nên \(x+1\ge y\)(1)
Suy ra \(x+3\ge y+2\)(1)
Mặt khác \(y+2⋮x\)nên \(y+2\ge x\)(2)
Từ (1) và (2) suy ra \(x\le y+2\le x+3\)
Suy ra \(y+2=x\)hoặc \(y+2=x+1\)hoặc \(y+2=x+2\)hoặc \(y+2=x+3\)
+Với \(y+2=x\)mà \(x+1⋮y\)nên \(3⋮y\)mà y là số nguyên dương nên y = 1 hoặc y = 3
Nếu y = 1 thì x =3 ( thoả mãn )
Nếu y = 3 thì x = 5 ( thoả mãn )
+ Với \(y+2=x+1\)mà \(x+1⋮y\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y =1 hoặc y =2
Nếu y =1 thì x = 2 ( không thoả mãn )
Nếu y = 2 thì x =3 ( không thoả mãn )
+Với \(y+2=x+2\)mà \(y+2⋮x\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y = 1 hoặc y =2
Nếu y = 1 thì x= 1 ( thoả mãn )
Nếu y =2 thì x = 2 ( không thoả mãn )
+Với \(y+2=x+3\)mà \(y+2⋮x\)nên \(x+3⋮x\)nên \(3⋮x\)mà x là số nguyên dương nên x =1 hoặc x = 3
Nếu x = 1 thì y = 2 ( thoả mãn )
Nếu x = 3 thì y = 4 ( thoả mãn )
Kết luận....
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
Ta có: \(x^2+2x^2+15=3x^2+15\)
Thực hiện phép chia, ta được:
3x + 15 x + 3 2 3x + y 3x + 9x 2 - 9x + 15 - xy + 3y - (9 - y)x + (15 - 3y)
Suy ra để \(x^2+2x^2+15\) chia hết cho x + 3 thì - (9 - y)x + (15 - 3y) = 0
Hay - (9 - y)x = 15 - 3y
Khi đó \(x=\dfrac{15-3y}{-9+y}\) hay \(\left(15-3y\right)⋮\left(-9+y\right)\)
Hay \(\left[\left(15-3y\right)-3\left(-9+y\right)\right]⋮\left(-9+y\right)\)
Hay \(42⋮\left(-9+y\right)\)
Khi đó (-9 + y) ϵ Ư(42) = {1; -1; 2; -2; 3; -3; 6; -6; 7; -7; 14; -14; 21; -21; 42; -42}
Xét bảng
-9 + y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 7 | -7 | 14 | -14 | 21 | -21 | 42 | -42 |
y | 10 | 8 | 11 | 7 | 12 | 6 | 15 | 3 | 16 | 2 | 23 | -5 | 30 | -12 | 51 | -33 |
\(x=\dfrac{15-3y}{-9+y}\) | -15 | 9 | -9 | 3 | -7 | 1 | -5 | -1 |
-33/7 (loại) |
-9/7 (loại) | -27/7 (loại) | -15/7 (loại) | -25/7 (loại) | -17/7 (loại) | -23/7 (loại) | -19/7 (loại) |
Vậy để \(x^2+2x^2+15\) chia hết cho x + 3 thì x ϵ {-15; 9; -9; 3; -7; 1; -5; -1}
\(2x-1⋮x-3\)
\(=>2.\left(x-3\right)+5⋮x-3\)
Do \(2.\left(x-3\right)⋮x-3\)
\(=>5⋮x-3\)
\(=>x-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(=>x\in\left\{-2;2;4;8\right\}\)
TL :
Ô bỏ các số âm đi nhé
Vì đây là nguyên dương
HT