Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với $x$ nguyên, để $\frac{2x^2+1}{2x-1}$ nhận giá trị nguyên thì:
$2x^2+1\vdots 2x-1$
$\Rightarrow x(2x-1)+x+1\vdots 2x-1$
$\Rightarrow x+1\vdots 2x-1$
$\Rightarrow 2(x+1)\vdots 2x-1$
$\Rightarrow (2x-1)+3\vdots 2x-1$
$\Rightarrow 3\vdots 2x-1$
$\Rightarrow 2x-1\in \left\{\pm 1; \pm 3\right\}$
$\Rightarrow x\in \left\{1; 0; 2; -1\right\}$
\(A=\dfrac{2x+1}{4\sqrt{x}}\)
\(A=\dfrac{\sqrt{x}}{2}-\dfrac{1}{4\sqrt{x}}\)
Để A nguyên thì \(\dfrac{1}{4\sqrt{x}}\) nguyên
⇔\(4\sqrt{x}\) là ước của 1 {\(\mp\)1}
*\(4\sqrt{x}=1\)
⇔\(\sqrt{x}=\dfrac{1}{4}\)
⇔\(x=\dfrac{1}{16}\)(TM)
*\(4\sqrt{x}=-1\)
⇔\(\sqrt{x}=-\dfrac{1}{4}\)(Loại)
Vậy x ϵ {\(\dfrac{1}{16}\)} thì A nguyên
Dùng biến đổi tương đương chứng minh được :
( x2 + x+2)2 = x4 + 2x3 + 5x2 +4x+4 > x4 +2x3 +2x2 +x+3 > x4 + 2x3 +x2 = ( x2 +x)2
=) x4 +2x3 +2x2 +x+3 = ( x2 +x+1)2 (=) x4 +2x3 +2x2 +x+3 = x4 +2x3 +3x2 +2x+1
(=) x2 +x-2=0 (=) x=1 hoặc x=-2
Đặt: \(y^2=\) \(x^4+\left(x+1\right)^3-2x^2-2x\)
= \(x^4+x^3+x^2+x+1\) là số chính phương
<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)
Ta có:
\(4y^2=4x^4+4x^3+4x^2+4x+4>4x^4+4x^3+x^2=\left(2x^2+x\right)^2\)
\(4y^2=4x^4+4x^3+4x^2+4x+4\le4x^4+4x^3+9x^2+4x+4=\left(2x^2+x+2\right)^2\)
=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
=> \(\orbr{\begin{cases}4y^2=\left(2x^2+x+2\right)^2\\4y^2=\left(2x^2+x+1\right)^2\end{cases}}\)
TH1: \(4y^2=\left(2x^2+x+2\right)^2\)
hay \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+9x^2+4x+4\)
<=> \(x=0\)thỏa mãn
Th2: \(4y^2=\left(2x^2+x+1\right)^2\)
hay \(4x^4+4x^3+4x^2+4x+4=4x^4+5x^2+1+4x^3+2x\)
<=> \(x^2-2x-3=0\)
<=> x = 3 hoặc x = -1. thử lại thỏa mãn
Vậy x = 0 ; x = -1 hoặc x = 3