Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(Q=x+1\)
Không thể tìm được GTLN hay GTNN của Q.
b)
\(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)
Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)
Vậy x=1, x=9 là các giá trị cần tìm
Để H lớn nhất thì \(\frac{1}{H}=\frac{\left(x+2018\right)^2}{x}\) nhỏ nhất.
Ta có: \(\frac{1}{H}=\frac{x^2+2.x.2018+2018^2}{x}=x+4036+\frac{2018^2}{x}\)
\(\frac{x+\frac{2018^2}{x}}{2}\ge\sqrt{x.\frac{2018^2}{x}}=2018\) (áp dụng bất đẳng thức cosi) \(\Rightarrow x+\frac{2018^2}{x}\ge4036\)
\(\frac{1}{A}\ge4036+4036=8072\Rightarrow A\le\frac{1}{8072}\)
Dấu "=" xảy ra khi: \(x=\frac{2018^2}{x}\Rightarrow x^2=2018^2\Rightarrow x=2018\left(x>0\right)\)
Vậy GTLN của H là \(\frac{1}{8072}\Leftrightarrow x=2018\)
a) ĐKXĐ : x > 0 , x khác 1
b)Rút gọn
P = 6+ căn x trên căn x + 1
Ta có: \(A=\frac{\sqrt{x}+7}{\sqrt{x}+4}=\frac{\left(\sqrt{x}+4\right)+3}{\sqrt{x}+4}=1+\frac{3}{\sqrt{x}+4}\)
a) Vì \(\sqrt{x}+4\ge4>3\left(\forall x\right)\)
\(\Rightarrow\frac{3}{\sqrt{x}+4}\) luôn không nguyên
=> A luôn không nguyên
b) Không thể tìm được giá trị nhỏ nhất của A, ta chỉ có thể tìm được GTLN:
\(\sqrt{x}+4\ge4\left(\forall x\right)\)
\(\Rightarrow\frac{3}{\sqrt{x}+4}\le\frac{3}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max(A) = 7/4 khi x = 0
\(P=\dfrac{x-6}{x-2}=\dfrac{x-2-4}{x-2}=1-\dfrac{4}{x-2}\)
Để P lớn nhất thì \(-\dfrac{4}{x-2}\) lớn nhất
=>\(\dfrac{4}{x-2}\) nhỏ nhất
=>x-2=-1
=>x=1
\(P=\dfrac{x-2-4}{x-2}=1-\dfrac{4}{x-2}\)
P đạt giá trị nguyên lớn nhất khi \(\dfrac{4}{x-2}\) đạt giá trị nguyên nhỏ nhất
\(\Rightarrow\dfrac{4}{x-2}=-4\Rightarrow x-2=-1\Rightarrow x=1\)