
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(\frac{5-x}{x-2}\)=\(\frac{-\left(x-2\right)+3}{x-2}\)=-1 +\(\frac{3}{x-2}\)
đề M nguyên thì x-2 là ước của 3
x-2=1 => x=3
x-2=-1 => x=-1
x-2=3 => x=5
x-2=-3 => x=-1
b. để M đạt giá trị nhỏ nhất khi x- là số nguyên âm lơn nhất
x-2=-1
x=1

để A có giá trị nguyên thì \(9⋮\sqrt{x}-5\)
\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
ta có bảng
\(\sqrt{x}-5\) | 1 | -1 | 3 | -3 | 9 | -9 |
x | \(∄\) | 2 | \(∄\) | \(∄\) | \(∄\) | \(∄\) |
vậy x=2
ý nhầm đoạn kẻ bảng sai
\(\sqrt{x}-5\) | -1 | 1 | 3 | -3 | 9 | -9 |
x | 16 | 36 | 64 | 4 | 196 | -2 |
vậy \(x\in\left\{16;36;64;4;196;-2\right\}\)

Ta có M=\(\frac{5-x}{x-2}=\frac{-\left(x-5\right)}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=-1+\frac{3}{x-2}\)
Để M nguyên thì \(x-2\inƯ\left(3\right)=\left\{\pm1,\pm3\right\}\)
Ta có bảng sau:
x-2 | -3 | -1 | 1 | 3 |
x | -1 | 1 | 3 | 5 |
Vậy x={-1,1,3,5}
để M nguyên
=> \(5-x⋮x-2\)và \(x\ne2\)
vì x-2\(⋮x-2\)
=> -(x-2)\(⋮x-2\)
=>\(\left(5-x\right)-\left[-\left(x-2\right)\right]⋮x-2\)
\(\Rightarrow3⋮x-2\)
=>\(x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
ta có bảng
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 2 | 5 | -1 |
mà \(x\ne2\)
=> \(x\in\left\{3;5;-1\right\}\)

Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản