Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
Bài 1
ĐK \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
A =\(\left(\frac{x^2-x+7}{\left(x+2\right)\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{2x}{\left(x+2\right)\left(x-2\right)}\right)\)
\(=\frac{x^2-x+7+x-2}{\left(x+2\right)\left(x-2\right)}:\frac{x^2+4x+4-x^2+4x-4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2+5}{\left(x+2\right)\left(x-2\right)}.\frac{\left(x+2\right)\left(x-2\right)}{6x}=\frac{x^2+5}{6x}\)
b , \(A=1\Rightarrow\frac{x^2+5}{6x}=1\Rightarrow x^2-6x+5=0\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}\left(tm\right)}\)
Vậy x=1 hoặc x=5
Bài 2.
a. \(B=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2+x\right)\left(2-x\right)}:\frac{x+3}{2-x}\)
\(=\frac{4x^2+8x}{\left(2+x\right)\left(2-x\right)}.\frac{2-x}{x+3}=\frac{2x}{x+3}\)
b. \(B=\frac{2x}{x+3}=2-\frac{6}{x+3}\)
B nguyên \(\Leftrightarrow x+3\inƯ\left(-6\right)\Rightarrow x+3\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)
Vậy \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)thì B nguyên
d, \(\frac{3x}{x+2}=\frac{3\left(x+2\right)-6}{x+2}=3-\frac{6}{x+2}\)
\(\Rightarrow x+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x + 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -4 |
e, \(C=\frac{A}{B}>0\Rightarrow\frac{3x}{x+2}.\frac{x+2}{x^2+2}=\frac{3x}{x^2+2}>0\)
\(\Rightarrow3x>0\Rightarrow x>0\)vì \(x^2+2>0\)
Kết hợp với đk vậy \(x>0;x\ne\pm2\)
f, vừa hỏi thầy, nên quay lại làm nốt :>
f, Để \(\left|C\right|>C\Rightarrow C< 0\)vì \(\left|C\right|\ge0\)
\(\Rightarrow C=\frac{3x}{x^2+2}< 0\Rightarrow3x< 0\Leftrightarrow x< 0\)
a) ĐKXĐ : x > 0 , x khác 1
b)Rút gọn
P = 6+ căn x trên căn x + 1
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne\pm2\end{cases}}\)
\(P=\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{2}{\sqrt{x}+2}-\frac{4\sqrt{x}}{x-4}\)
\(\Leftrightarrow P=\frac{x+2\sqrt{x}-2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(\Leftrightarrow P=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
Để P là số nguyên \(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+2}\)là số nguyên
\(\Leftrightarrow\sqrt{x}-2⋮\sqrt{x}+2\)
\(\Leftrightarrow4⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-4;0;-6;2\right\}\)
Loại những giá trị \(\sqrt{x}\in\left\{-3;-1;-4;-6;2\right\}\)
\(\Leftrightarrow\sqrt{x}=0\)
\(\Leftrightarrow x=0\)
Vậy để P là số nguyên \(\Leftrightarrow x=0\)
Cho mình sửa 1 chút nhé :
\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
Với x + 2 = 0 <=> x = -2 thì A = 0
Với x \(\ne\)- 2 thì ta luôn có tử nhỏ hơn mẫu nên A không thể nguyên được
Vậy có duy nhất giá trị x = - 2 và A = 0