Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Ta có: |x-1|+|x-2|=5(1)
Trường hợp 1: x<1
(1) trở thành 1-x+2-x=5
=>-2x+3=5
=>-2x=2
hay x=-1(nhận)
Trường hợp 2: 1<=x<2
(1) trở thành x-1+2-x=5
=>1=5(vô lý)
Trường hợp 3: x>=2
(1) trở thành x-1+x-2=5
=>2x-3=5
hay x=4(nhận)
3: |x-3|+|x+1|=10(2)
Trường hợp 1: x<-1
(2) trở thành -x-1+3-x=10
=>-2x+2=10
=>-2x=8
hay x=-4(nhận)
Trường hợp 2: -1<=x<3
(2) trở thành x+1+3-x=10
=>4=10(vô lý)
Trường hợp 3: x>=3
(2) trở thành x-3+x+1=10
=>2x-2=10
hay x=6(nhận)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)
e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)
g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)
h)Tương tự các câu trên
i) x = 0
k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)
l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)
=> x + 1 = 3 => x = 2
x.(x+1)=0
suy ra x=0 hoac x+1=0
x=0-1
x=-1
vay x=0 hoac x=-1
mấy câu sau cũng làm tương tự
b) | 3x - 4 | + | 5y + 5 | = 0
Ta có \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|5y+5\right|\ge0\end{cases}\forall xy}\)
\(\Leftrightarrow\left|3x-4\right|+\left|5y+5\right|\ge0\forall xy\)
Do đó để tổng | 3x - 4 | + | 5y + 5 | = 0 thì \(\hept{\begin{cases}\left|3x-4\right|=0\\\left|5y+5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-4=0\\5y+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=4\\5y=-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-1\end{cases}}\)
Vậy \(x=\frac{4}{3}\) và y= - 1
c) | x + 3 | + | x + 1 | = 3x (*1)
Ta có \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\forall x}\)
\(\Leftrightarrow\) | x + 3 | + | x + 1 | \(\ge0\forall\)x
\(\Leftrightarrow3x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow x+3>x+1>x\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=x+3\\\left|x+1\right|=x+1\end{cases}}\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=x+3+x+1\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=2x+4\) (*2)
Từ (*1) và (*2) <=> 2x + 4 = 3x
\(\Leftrightarrow4=3x-2x\)
\(\Leftrightarrow x=4\)
Vậy x = 4
Câu a t đang nghi sai đề
Lát t lm đc thì lm sau nhé
Mấy câu này dễ mà,động não lên chứ bạn:v
Link______________Link
h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
\(\ge\left|x-1+3-x\right|=2\)
\(\Rightarrow x+1>2\Leftrightarrow x>1\)
Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)
Câu b xét khoảng tương tự với cái link t đưa thôi
hơi bức xúc rồi đó
tau chỉ muốn kiểm tra lại thôi
A=1.2.3+2.3.4+3.4.5+...+98.99.100
a, Vào câu hỏi tương tự nhé
b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)
=> x+3+x+1=3x
=> 2x+4=3x
=>x=4
c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)
=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)
=> \(2005\ge\left|x+101\right|+2004\)
=> \(\left|x+101\right|\le1\)
=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)
d, tương tự b
a)\(-x^2\left(x^2-4\right)=-25\left(x^2-4\right)\)
\(\Leftrightarrow-x^2=-25\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm5\)
Tìm \(x\) biết: |\(x\) + 1| + |\(x\) + 4| = 3\(x\) ( đk \(x\) ≥ 0)
|\(x\) + 1| + | \(x\) + 4| = 3\(x\)
Với \(x\) ≥ 0 ta có: \(x\) + 1 + \(x\) + 4 = 3\(x\)
2\(x\) + 5 = 3\(x\)
3\(x\) - 2\(x\) = 5
\(x\) = 5 (thỏa mãn)
Vậy \(x\) = 5
\(\left|x+1\right|+\left|x+4\right|=3x\left(1\right)\)
Ta có :
\(\left|x+1\right|+\left|x+4\right|\ge\left|x+1+x+4\right|=\left|2x+5\right|\)
\(pt\left(1\right)\Leftrightarrow\left|2x+5\right|=3x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+5=3x\\2x+5=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\5x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)