\(\left(x+1\right)^2=4x^2+20x+25\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2019

\(\left(x+1\right)^2=4x^2+20x+25\)

<=> \(\left(x+1\right)^2=\left(2x+5\right)^2\)

<=> \(x+1=2x+5\)

=> \(x=-4\)

12 tháng 12 2019

Vũ Minh Tuấn Băng Băng 2k6 Hưng Nguyễn Lê Việt Nguyễn Lê Phước Thịnh ........

Help me pờ li

10 tháng 6 2018

\(x=7\Rightarrow\left\{{}\begin{matrix}4=x-3\\20=3x-1\end{matrix}\right.\)\(\Rightarrow P\left(7\right)=x^{100}-4x^{99}-20x^{98}-4x^{97}-...-20x^2-4x\\ =x^{100}-\left(x-3\right)x^{99}-\left(3x-1\right)x^{98}-\left(x-3\right)x^{97}-...-\left(3x-1\right)x^2-\left(x-3\right)x\\ =x^{100}-x^{100}+3x^{99}-3x^{99}+x^{98}-x^{98}+3x^{97}-...-3x^3+x^2-x^2+3x\\ =3x\\ =21\)

 

27 tháng 6 2017

a) ... \(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\hept{\begin{cases}x=1\\x=2\\x=-2\end{cases}}\)Vậy.....

b) ... \(\Leftrightarrow x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+10x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x^2+10\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=2\\x^2=-10\Rightarrow x\in\theta\end{cases}}\)(\(\theta\)là rỗng) Vậy.........

c) ... \(\Leftrightarrow2x-3=x+5\Leftrightarrow x=8\)Vậy.......

d) ... \(\Leftrightarrow x\left(x^2-16\right)=0\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}\)Vậy......

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x+1=t\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)-24=0\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)

TH1:t=5\(\Rightarrow x^2+3x+1=5\)

\(\Leftrightarrow x^2+3x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

TH2:t=-5\(\Rightarrow x^2+3x+1=-5\)

\(\Leftrightarrow x^2+3x+6=0\)(vô nghiệm)

Vậy ...

b)\(\Leftrightarrow2\left(x^4-10x^2+9\right)=0\)

\(\Leftrightarrow x^4-9x^2-x^2+9=0\)

\(\Leftrightarrow x^2\left(x^2-9\right)-\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\\x=1\\x=-1\end{matrix}\right.\)

23 tháng 6 2017

\(\left(x+1\right)^2=x+1\)

\(\left(x+1\right)^2-\left(x+1\right)=0\)

\(\left(x+1\right)\left(x+1-1\right)=0\)

\(\left(x+1\right)x=0\)

\(\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)vậy.....

\(x\left(x-5\right)^2-4x+20=0\)

\(x\left(x-5\right)^2-4\left(x-5\right)=0\)

\(\left(x-5\right)\left[x\left(x-5\right)-4\right]=0\)

\(\left(x-5\right)\left(x^2-5x-4\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x^2-5x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-0,7015621187\end{cases}}}\)vậy.........

\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7\left(x+6\right)=0\)

\(\left(x+6\right)\left(x-7\right)=0\)

\(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}}\) vậy....

\(x^3-5x^2+x-5=0\)

\(x^2\left(x-5\right)+\left(x-5\right)=0\)

\(\left(x-5\right)\left(x^2+1\right)=0\)

\(\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x^2=-1\Rightarrow x\in\Phi\end{cases}}}\)vậy........

\(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^3+10x\right)=0\)

\(\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)vậy..............

nhớ chọn mk nha

30 tháng 9 2018

a ) \(\left(\dfrac{20x}{3y^2}\right):\left(\dfrac{4x^3}{5y}\right)=\dfrac{20x}{3y^2}.\dfrac{5y}{4x^3}=\dfrac{100xy}{12x^3y^2}=\dfrac{25}{3x^2y}\)

b ) Đ/k : \(x\ne-4\)

Ta có : \(\dfrac{4x+12}{\left(x+4\right)^2}:\dfrac{3\left(x+3\right)}{x+4}\)

\(=\dfrac{4\left(x+3\right)}{\left(x+4\right)^2}.\dfrac{x+4}{3\left(x+3\right)}\)

\(=\dfrac{4\left(x+3\right)\left(x+4\right)}{3\left(x+3\right)\left(x+4\right)^2}\)

\(=\dfrac{4}{3\left(x+4\right)}\)

\(=\dfrac{4}{3x+12}\)

29 tháng 10 2017

a) ( 4x - 1 ) ( x - 2 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{4};2\right\}\)

b) 4x2 - 12x = 0

<=> 4x ( x - 3 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy \(x\in\left\{0;3\right\}\)

c) ( x - 5 )4 + 25 - x2 = 0

( x - 5 ) 4 + ( 5 - x ) ( 5 + x ) = 0

( x - 5 ) ( 4 + 5 + x ) = 0

( x - 5 ) ( 9 + x ) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\9+x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-9\end{cases}}\)

Vậy \(x\in\left\{-9;5\right\}\)

29 tháng 10 2017

a)x=0,25,x=2

b)x=3,x=0

12 tháng 11 2018

(*)\(\dfrac{15x\left(x+5\right)}{20x^2\left(x+5\right)}=\dfrac{3}{4x}\)

(*)\(\dfrac{x^3-4x^2}{y\left(x-4\right)}=\dfrac{x^2\left(x-4\right)}{y\left(x-4\right)}=\dfrac{x^2}{y}\)

(*)\(\dfrac{5\left(a-2c\right)^2}{2a^2-4ac}=\dfrac{5\left(a-2c\right)^2}{2a\left(a-2c\right)}=\dfrac{5\left(a-2c\right)}{2a}\)