\(\left(x-2\right):\left(x+\dfrac{3}{4}\right)>0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2023

Câu này bạn hỏi rồi mà dương

24 tháng 8 2023

Cho bn í hỏi lại

26 tháng 11 2017

a) \(\sqrt{x+1}=7\Rightarrow x+1=49\Rightarrow x=48\)

b) \(\left(x-2\right).\left(x+\dfrac{2}{3}\right)>0\)

\(\Rightarrow\left(x-2\right).\left(x+\dfrac{2}{3}\right)\) cùng dấu

\(\Rightarrow\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\)

Với \(\left\{{}\begin{matrix}x-2>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>2\\x>-\dfrac{2}{3}\end{matrix}\right.\Rightarrow x>2\)

Với \(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 2\\x< -\dfrac{2}{3}\end{matrix}\right.\Rightarrow x< -\dfrac{2}{3}\)

Vậy \(\left[{}\begin{matrix}x>2\\x< -\dfrac{2}{3}\end{matrix}\right.\)

c) \(\left(\dfrac{2}{3}x-1\right).\left(\dfrac{3}{4}x+\dfrac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}x-1=0\\\dfrac{3}{4}x+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Chúc bạn học tốt!!!!

26 tháng 11 2017

a, \(\sqrt{x+1}=7\\ \Rightarrow x+1=49\\ \Rightarrow x=48\)

b,TH1:

\(\left\{{}\begin{matrix}x-2>0\\x +\dfrac{2}{3}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>\dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x>2\)

TH2:

\(\left\{{}\begin{matrix}x-2< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< \dfrac{-2}{3}\end{matrix}\right.\Leftrightarrow x< \dfrac{-2}{3}\)

=> Vậy 2<x< \(\dfrac{-2}{3}\)

c, TH1:

\(\dfrac{2}{3}x-1=0\\ \Rightarrow\dfrac{2}{3}x=1\\ \Rightarrow x=\dfrac{3}{2}\)

TH2:

\(\dfrac{3}{4}x+\dfrac{1}{2}=0\\ \Rightarrow\dfrac{3}{4}x=\dfrac{-1}{2}\\ \Rightarrow x=\dfrac{-2}{3}\)

Vậy x = \(\dfrac{3}{2};\dfrac{-2}{3}\)

9 tháng 6 2017

a) \(x=\pm2,1\)

b) \(x=-\dfrac{3}{4}\)

c) \(\)Không tồn tại x

d)\(x=0,35\)

28 tháng 7 2017

a, \(\left|x\right|=2,1\)

=> \(x=\pm2,1\)

b, \(\left|x\right|=\dfrac{3}{4},x< 0\)

=> \(x=\dfrac{3}{4}\)

c, \(\left|x\right|=-1\dfrac{2}{5}\)

=> Không tồn tại x.

d, \(\left|x\right|=0,35,x>0\)

=> \(x=0,35\)

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

22 tháng 12 2017

a)

\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)

b)

\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 1 2018

tiếp đi bạn

27 tháng 9 2017

a)=>x+1<0=>x<-1

x-2 =<0=> x=<2

b)x-2>0=>x>2

x+2/3>=0=>x>=-2/3

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)

11 tháng 9 2017

\(a,\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)

=>Trong 2 số phải có 1 số âm và 1 số dương

\(2-x>\dfrac{4}{5}-x\)

=>\(\dfrac{4}{5}< x< 2\)

Vậy...

20 tháng 6 2017

a/dễ --> tự lm

b/ \(\left(x-\dfrac{4}{7}\right)\left(1\dfrac{3}{5}+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\1\dfrac{3}{5}+2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\2x=\dfrac{8}{5}\Rightarrow x=\dfrac{4}{5}\end{matrix}\right.\)

Vậy...............

c/ \(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)

TH1: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{4}{7}\\x>-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{4}{7}\)

TH2: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x< -\dfrac{1}{2}\)

Vậy \(x>\dfrac{4}{7}\) hoặc \(x< -\dfrac{1}{2}\) thì thỏa mãn đề

d/ \(\left(2x-3\right):\left(x+1\dfrac{3}{4}\right)< 0\)

TH1: \(\left\{{}\begin{matrix}2x-3>0\\x+1\dfrac{3}{4}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1,5\\x< -\dfrac{7}{4}\end{matrix}\right.\)(vô lý)

TH2: \(\left\{{}\begin{matrix}2x-3< 0\\x+1\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1,5\\x>-\dfrac{7}{4}\end{matrix}\right.\)\(\Rightarrow-\dfrac{7}{4}< x< 1,5\)

Vậy...................

11 tháng 9 2017

x< -7/4(vô lí ) vì sao bạn

 

20 tháng 8 2017

a) ta có : \(\left(x-\dfrac{1}{3}\right).\left(x+\dfrac{2}{3}\right)>0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>\dfrac{-2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{3}\\x< \dfrac{-2}{3}\end{matrix}\right.\) vậy \(x>\dfrac{1}{3}\) hoặc \(x< \dfrac{-2}{3}\)

b) \(\left(x+\dfrac{3}{5}\right).\left(x+1\right)< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{-3}{5}\\x< -1\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{-3}{5}\\x>-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\-1< x< \dfrac{-3}{5}\end{matrix}\right.\) vậy \(-1< x< \dfrac{-3}{5}\)

20 tháng 8 2017

\(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{3}\right)>0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\Rightarrow x>\dfrac{1}{3}\\x+\dfrac{2}{3}>0\Rightarrow x>-\dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\Rightarrow x< \dfrac{1}{3}\\x+\dfrac{2}{3}< 0\Rightarrow x< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(x>-\dfrac{2}{3}\) hoặc \(x< \dfrac{1}{3}\)

\(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\Rightarrow x< -\dfrac{3}{5}\\x+1>0\Rightarrow x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\Rightarrow x>-\dfrac{3}{5}\\x+1< 0\Rightarrow x< -1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< -\dfrac{3}{5}\)

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)