\(\left|2+3x\right|=\left|4x-3\right|\)

giải giúp mình nha mình đan...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

\(\left|2+3x\right|=\left|4x-3\right|\)

\(\Rightarrow2+3x=\pm\left(4x-3\right)\)

+) \(2+3x=4x-3\)

\(\Rightarrow-x=-5\)

\(\Rightarrow x=5\)

+) \(2+3x=-\left(4x-3\right)\)

\(\Rightarrow2+3x=-4x+3\)

\(\Rightarrow7x=1\)

\(\Rightarrow x=\frac{1}{7}\)

Vậy \(x\in\left\{5;\frac{1}{7}\right\}\)

17 tháng 7 2016

a.

\(\left(x+\frac{1}{2}\right)\times\left(x-\frac{3}{4}\right)=0\)

TH1:

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

TH2:

\(x-\frac{3}{4}=0\)

\(x=\frac{3}{4}\)

Vậy \(x=-\frac{1}{2}\) hoặc \(x=\frac{3}{4}\)

b.

\(\left(\frac{1}{2}x-3\right)\times\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)

TH1:

\(\frac{1}{2}x-3=0\)

\(\frac{1}{2}x=3\)

\(x=3\div\frac{1}{2}\)

\(x=3\times2\)

\(x=6\)

TH2:

\(\frac{2}{3}x+\frac{1}{2}=0\)

\(\frac{2}{3}x=-\frac{1}{2}\)

\(x=-\frac{1}{2}\div\frac{2}{3}\)

\(x=-\frac{1}{2}\times\frac{3}{2}\)

\(x=-\frac{3}{4}\)

Vậy \(x=6\) hoặc \(x=-\frac{3}{4}\)

c.

\(\frac{2}{3}-\frac{1}{3}\times\left(x-\frac{3}{2}\right)-\frac{1}{2}\times\left(2x+1\right)=5\)

\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)

\(\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5-\frac{2}{3}\)

\(-\frac{4}{3}x=\frac{13}{3}\)

\(x=\frac{13}{3}\div\left(-\frac{4}{3}\right)\)

\(x=\frac{13}{3}\times\left(-\frac{3}{4}\right)\)

\(x=-\frac{13}{4}\)

d.

\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)

\(4x-x-\frac{1}{2}=2x-\frac{1}{2}+5\)

\(4x-x-2x=\frac{1}{2}-\frac{1}{2}+5\)

\(x=5\)

22 tháng 12 2016

\(\left|2x+1\right|+\left|x+8\right|=4x\) (*)

+)Xét \(x\ge-8\Rightarrow\)\(\begin{cases}2x+1\ge0\Rightarrow\left|2x+1\right|=2x+1\\x+8\ge0\Rightarrow\left|x+8\right|=x+8\end{cases}\) thì (*) thành:

\(2x+1+x+8=4x\)

\(\Rightarrow3x+9=4x\)

\(\Rightarrow x=9\) (thỏa mãn)

+)Xét \(-\frac{1}{2}\le x< -8\)\(\Rightarrow\begin{cases}x\ge-\frac{1}{2}\Rightarrow2x+1\ge0\Rightarrow\left|2x+1\right|=2x+1\\x< -8\Rightarrow x+8< 0\Rightarrow\left|x+8\right|=-\left(x+8\right)=-x-8\end{cases}\) thì (*)

thành: \(2x+1+\left(-x-8\right)=4x\)

\(\Leftrightarrow x-7=4x\)

\(\Leftrightarrow-3x=7\)

\(\Leftrightarrow x=-\frac{7}{3}\)( không thỏa mãn)

+)Xét \(x< -\frac{1}{2}\Rightarrow\)\(\begin{cases}2x+1< 0\Rightarrow\left|2x+1\right|=-\left(2x+1\right)=-2x-1\\x+8< 0\Rightarrow\left|x+8\right|=-\left(x+8\right)=-x-8\end{cases}\) thì (*) thành:

\(\left(-2x-1\right)+\left(-x-8\right)=4x\)

\(\Leftrightarrow-3x-9=4x\)

\(\Leftrightarrow-7x=9\)

\(\Leftrightarrow x=-\frac{9}{7}\) (không thỏa mãn)

 

 

31 tháng 12 2016

Nguyễn Huy Thắng , cho mk hỏi là (-8) và (-\(\frac{1}{2}\)) đó bạn lấy đâu ra vậy ? Hỏi ngu tí đừng CHỬI nghe!!!

21 tháng 3 2017

câu hỏi đâu ?

21 tháng 3 2017

ben tren y cho co tu chung minh y

11 tháng 2 2017

\(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{y}=\frac{3}{5}\)

Thay \(x=3;y=5\) ta có : \(\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\cdot3^2+3\cdot5^2}{10\cdot3^2-3\cdot5^2}=8\)

Vậy \(C=8\)

12 tháng 2 2017

Thank bạn nha ! hihi

14 tháng 2 2017

\(S=\left(\frac{1}{7}\right)^2+\left(\frac{2}{7}\right)^2+\left(\frac{3}{7}\right)^2+...+\left(\frac{10}{7}\right)^2\)

\(=\frac{1^2}{7^2}+\frac{2^2}{7^2}+\frac{3^2}{7^2}+...+\frac{10^2}{7^2}\)

\(=\frac{1^2+2^2+3^2+...+10^2}{7^2}\)

\(=\frac{385}{49}=\frac{55}{7}\)

Vậy S = \(\frac{55}{7}\)

14 tháng 2 2017

Ta có : 49S= \(1^2+2^2+...+10^2\)

49S= 385

S = \(\frac{385}{49}=\frac{55}{7}.\)

11 tháng 6 2017

F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|

Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:

F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50

=> F\(\ge\)50 => \(Min_F=50\)

P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?

11 tháng 6 2017

\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)

\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)

\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)

(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))

Với mọi giá trị của \(x\in R\) ta có:

\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)

\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)

\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............

\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)

Dấu "=" sảy ra khi:

\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)

Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)

Mình cũng không chắc đâu! Chúc bạn học tốt!!!

20 tháng 2 2017

2.Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)

\(\Rightarrow a+b+c=a+b-c\)

\(\Rightarrow a+b+c-a-b+c=0\)

\(\Rightarrow2c=0\)

\(\Rightarrow c=0\)

Vậy c=0

20 tháng 2 2017

BT5: Ta có: f(1)=1.a+b=1 =>a+b=1 (1)

f(2)=2a+b=4 (2)

Trừ (1) cho (2) ta có: 2a+b-a-b=4-1 => a=3

Với a=3 thay vào (1) ta có: 3+b=1 => b=-2

Vậy a=3, b=-2