Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2^x.2^4=128
=>2^x.2^2=2^7
=>2^x=2^7:2^2
=>2^x=2^5
=>x=5
b)x^15=x
=>x^15-x=0
=>x(x^16-x)=0
=>2 trượng hợp:x=0 và x^16-1=0(x^16-1=0 cx 2 th nha)
b),d),e) như nhau nha!
c) dễ rồi
\(a)2^x\cdot4=128\)
\(\Rightarrow2^x=\frac{128}{4}\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(b)x^{15}=x\)
\(\Rightarrow x^{15}-x=0\)
\(\Rightarrow x(x^{14}-1)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=0\\x^{14}=1\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}\)
\(c)(2x+1)^3=125\)
\(\Rightarrow(2x+1)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=5-1\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=4:2=2\)
\(d)(x-5)^4=(x-5)^6\)
\(\Rightarrow(x-5)^6-(x-5)^4=0\)
\(\Rightarrow(x-5)^4\cdot\left[(x-5)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(x-5)^4=0\\(x-5)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(e)(2x-15)^5=(2x-15)^3\)
\(\Rightarrow(2x-15)^5-(2x-15)^3=0\)
\(\Rightarrow(2x-15)^3-\left[(2x-15)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}(2x-15)^3=0\\(2x-15)^2-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\varnothing\\x=8\end{cases}}\)
Chúc bạn hoc tốt :>
\(2^x.4=128\)
\(2^x=128:4\)
\(2^x=32\)
\(\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
\(x^{15}=x\Leftrightarrow x\in\left\{-1;0;1\right\}\)
\(\left(2x+1\right)^3=125\)
\(\Leftrightarrow\left(2x+1\right)^3=5^3\)
\(\Leftrightarrow2x+1=5\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
\(\Leftrightarrow\hept{\begin{cases}x-5=-1\\x-5=0\\x-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\x=5\\x=6\end{cases}}\)
\(\text{Vậy:}\)\(x\in\left\{4;5;6\right\}\)
\(2^x.4=128\Rightarrow2^x=32\Rightarrow2^x=2^5\Rightarrow x=5.\)
\(x^{15}=x\Rightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
\(\left(2x+1\right)^3=125\)
<=> \(\left(2x+1\right)^3=5^3\)
<=> \(2x+1=5\)
<=> \(x=2\)
\(\left(x-5\right)^6=\left(x-5\right)^4\)
<=> \(\left(x-5\right)^6-\left(x-5\right)^4=0\)
<=> \(\left(x-5\right)^4.\left[\left(x-5\right)^2-1\right]=0\)
<=> \(\orbr{\begin{cases}\left(x-5\right)^4=0\\\left(x-5\right)^2-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
Giải ra được x = 5 ; x = 6 ; x = 4 .
a ) ( x + 1 ) x ( x2 - 4 ) = 0
vậy chắc chắn 1 biểu thức phải bằng 0 để có kết quả đúng . vậy chỉ có thể là x2 - 4 = 0
vì phép còn lại là x + 1 = số nguyên dương
x2 - 4 = 0
x = 2
b ) x15 = x
vậy quá rõ x = 1 , 0
vì chỉ có 2 số này nhân bao nhiêu lần chính nó cũng bằng nó
c ) ( x - 5 ) 4 = ( x - 5 )6
4 x - 625 = 6 x - 15625
4 x + 15625 - 625 = 6 x
4 x + 15000 = 6 x
15000 = 2 x
x = 7500
d ) làm sau
a. \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
TH1: \(x+1=0\Rightarrow x=-1\)
TH2: \(x-2=0\Rightarrow x=2\)
TH3: \(x+2=0\Rightarrow x=-2\)
Vậy:...
b) \(x^{15}=x\)
\(\Rightarrow x\in\left\{0;1;-1\right\}\)
c) \(\left(x-5\right)^4=\left(x-5\right)^6\)
TH1:\(x-5=1\Rightarrow x=6\)
TH2: \(x-5=-1\Rightarrow x=4\)
TH3: \(x-5=0\Rightarrow x=5\)
d) \(\left(2x+1\right)^3=125\)
\(\Leftrightarrow2x+1=\sqrt[3]{125}=5\)
\(\Leftrightarrow x=2\)
Ta có : (X-12)(8+x)=0
=>x-12=0 hoặc 8+x=0
=>x=12 hoặc x=-8
Vậy x thuộc 12 và -8
\(\left(3^2\right)^{2010}=9^{2010}=81^{1005}\)
Vì 1 khi lũy thừa lên bao nhiêu thì số tận cùng vẫn là 1 vì 1 x 1 x 1 x 1... = ......1
Nên \(81^{1005}\)có số tận cùng là 1
Vậy \(\left(3^2\right)^{2010}\)có số tận cùng là 1
\(\Rightarrow\frac{4x^2-4x+1}{3}-\frac{3}{2}\left(x^2+6x+9\right)=\frac{1}{3}\left(x^2-1\right)+2x\)
\(\Rightarrow\frac{4x^2-4x+1}{3}-\frac{3x^2+18x+27}{2}=\frac{x^2-1}{3}+2x\)
\(\Rightarrow8x^2-8x+2-9x^2-54x-81=2x^2-2+12x\)
\(\Rightarrow-3x^2-74x-77=0\)
\(\Delta=5476-4.\left(-77\right).\left(-3\right)=4552\)
\(\Rightarrow\sqrt{\Delta}=\sqrt{4552}\)
\(\Rightarrow x=\frac{-74+\sqrt{4552}}{6};x=\frac{-74-\sqrt{4552}}{6}\)
\(\frac{\left(2x-1\right)^2}{3}-\frac{3.\left(x+3\right)^2}{2}=\frac{x^2-1}{3}+2x\)
Qui đồng lên là tìm được
\(\Rightarrow41-\left(2x+5\right)=18\)
\(\Rightarrow2x+5=23\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
a) Ta có: \(\left(x-3\right)\left(x-5\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-3< 0\\x-5>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3>0\\x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 3\\x>5\end{cases}}\) (vô lý) hoặc \(\hept{\begin{cases}x>3\\x< 5\end{cases}}\)(thỏa mãn).
Vậy 3 < x < 5 thì (x-3)(x-5) <0.
b) \(-6x-\left(-7\right)=25\)
\(\Rightarrow-6x=25-7\)
\(\Rightarrow-6x=18\Rightarrow x=\frac{18}{-6}=-3\)
Vậy x = -3.
c) \(46-\left(x-11\right)=-48\)
\(\Rightarrow46-x+11=-48\)
\(\Rightarrow46+11+48=x\Rightarrow x=105\).
d) \(\left(x+15\right)\left(x-2\right)=0\)
\(\Rightarrow\)x + 15 = 0 hoặc x - 2 = 0
\(\Rightarrow x=-15\)hoặc \(x=2\).
e) \(3\left(4-x\right)-2\left(x-5\right)=12\)
\(\Rightarrow12-3x-2x+10=12\)
\(\Rightarrow-3x-2x=12-10-12\)
\(\Rightarrow-5x=-10\Rightarrow x=2\).
Chúc bn hc tốt!
Bài 1:
\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)
=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)
=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)
=\(\frac{67}{4}\)
\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
=\(\frac{3}{7}-\frac{2}{3}\)
=\(-\frac{5}{21}\)
\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)
=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)
=\(\frac{5}{16}:\frac{7}{30}+1\)
=\(\frac{131}{56}\)
\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)
=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)
=\(\frac{3}{7}-\frac{13}{33}\)
=\(\frac{8}{231}\)
Bài đ làm giống hệt như bài c
Bài 2 :
\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)
Vậy x ∈{1;\(\frac{1}{3}\)}
\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)
=>\(\frac{19}{15}.x=\frac{19}{10}\)
=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)
Vậy x ∈ {\(\frac{3}{2}\)}
c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)
=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)
Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}
\(d,x-30\%.x=-1\frac{1}{5}\)
=\(70\%x=-\frac{6}{5}\)
=\(\frac{7}{10}.x=-\frac{6}{5}\)
=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)
Vậy x∈{\(-\frac{12}{7}\)}
Bài 2
a/
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)
b/ Đặt x làm thừa số chung rồi tính như bình thường
c/ Tương tự câu a
d/ Tương tự câu b
\(\left(15-5x\right)^3=-125=\left(-5\right)^3\)
\(\Leftrightarrow15-5x=-5\)
\(\Leftrightarrow5x=20\)
\(\Leftrightarrow x=4\)
Vậy : \(x=4\)
Ta có: (15-5x)3=-125
<=>(15-5x)3=-53
<=>15-5x=-5
<=>5x=15-(-5)
<=>5x=15+5
<=>5x=20
<=>x=4