Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì | x + \(\frac{5}{3}\)| \(\ge\)0 nên A = | x + \(\frac{5}{3}\)| + 112 \(\ge\)112
dấu " = " xảy ra khi | x + \(\frac{5}{3}\)| = 0 hay x = \(\frac{-5}{3}\)
\(\Rightarrow\)GTNN của A là 112 khi | x + \(\frac{5}{3}\) | = 0 hay x = \(\frac{-5}{3}\)
b) B = | x - 2,7 | + | x + 8,5 |
B = | 2,7 - x | + | x + 8,5 | \(\ge\)| 2,7 - x + x + 8,5 | = 11,2
\(\Rightarrow\)GTNN của B là 11,2 khi ( 2,7 - x ) . ( x + 8,5 ) \(\ge\)0 hay -8,5 \(\le\)x \(\le\)2,7
c) C = \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|2x+\frac{1}{4}\right|\)
C = \(\left|x+\frac{1}{2}\right|+\left|-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|\)\(\ge\)\(\left|x+\frac{1}{2}-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|=\frac{1}{6}+\left|2x+\frac{1}{4}\right|\ge\frac{1}{6}\)
\(\Rightarrow\)GTNN của C là \(\frac{1}{6}\)khi \(\hept{\begin{cases}2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\\\left(x+\frac{1}{2}\right).\left(-\frac{1}{3}-x\right)\ge0\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{3}\end{cases}}\)
Ta có: \(\left|x+\dfrac{1}{2}\right|=x+1\)
=>\(\left\{{}\begin{matrix}x+1>=0\\\left(x+\dfrac{1}{2}\right)^2=\left(x+1\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-1\\\left(x+\dfrac{1}{2}-x-1\right)\left(x+\dfrac{1}{2}+x+1\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-1\\-\dfrac{1}{2}\left(2x+\dfrac{3}{2}\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-1\\2x+\dfrac{3}{2}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=-1\\x=-\dfrac{3}{4}\end{matrix}\right.\)
=>\(x=-\dfrac{3}{4}\)
\(\left|x+\dfrac{1}{2}\right|=x+1\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=x+1\\-\left(x+\dfrac{1}{2}\right)=x+1\end{matrix}\right.\\ =>\left[{}\begin{matrix}\dfrac{1}{2}=1\left(\text{VÔ NGHIỆM}\right)\\-x+\dfrac{1}{2}=x+1=>x=-\dfrac{3}{4}\left(TM\right)\end{matrix}\right.\)